CROCO

Coastal and Regional Ocean COmmunity model

Coupling CROCO with other models using OASIS

Swen Jullien, Gildas Cambon, Mathieu Le Corre, Lionel Renault

Coupling philosophy

Coupling philosophy

The OASIS-MCT coupler

OASIS-MCT (Ocean-Atmosphere-Sea-Ice-Soil, Model Coupling Toolkit) is a coupler developed at CERFACS, Toulouse, France.

It is a **set of libraries** (not an executable file) providing functions which are called in the models themselves:

- Exchange of variables and time interpolations (PSMILE library)
- Parallel exchanges (MCT library)
- Grid interpolations (SCRIPR library)

It has the **advantage** of being:

- non-intrusive, easy implementation: only a few calls in the model time stepping, and a few additional routines
- A common interface for a variety of models (e.g. CROCO, NEMO, SURFEX, WW3...)

Coupling philosophy

OASIS-MCT implementation in models

OASIS-MCT implementation calls:

Initialization

oasis_init_comp(...)
oasis_get_localcomm(..)

Definitions

oasis_write_grid(...)
oasis_def_partitions(...)
oasis_def_var(...)

- Exchange fields (witin time stepping)

 oasis_put(...)
 oasis_get(...)
- Finalization

oasis_terminate(...)

Detailed OASIS implementation

In CROCO

Detailed OASIS implementation

In WW3

Detailed OASIS implementation

In WRF

Coupling sequence

Example

Exchange phase is called every time step but the effective exchanges are only performed at the defined coupling frequency

2022

Transformations performed by OASIS-MCT

The OASIS3-MCT coupler can process:

- time transformations (LOCTRANS):
 - INSTANT no time transformation, the instantaneous field is transferred
 - ACCUMUL the accumulated field over the coupling period is exchanged
 - AVERAGE the averaged field over the coupling period is transferred
 - T_MIN the minimum value of the field for each source grid point over the coupling period is transferred
 - T_MAX the maximum value of the field for each source grid point over the coupling period is transferred
- 2D spatial interpolations (SCRIPR):
 - BILINEAR interpolation based on a local bilinear approximation
 - BICUBIC interpolation based on a local bicubic approximation
 - CONSERV 1st or 2nd order conservative remapping
 - DISTWGT distance weighted nearest-neighbour interpolation (N neighbours)
 - GAUSWGTN nearest-neighbour interpolation weighted by their distance and a Gaussian function

See OASIS manual for more detailed information

OASIS-MCT namelist file

namcouple

The namcouple is the namelist file through which you will specify which fields will be coupled.

A first section gathers general settings:

OASIS-MCT namelist file

namcouple

The namcouple is the namelist file through which you will specify which fields will be coupled.

A second section provides the information on exchanged fields. A typical sub-section for one exchanged field looks like:

CROCO_SSH WW3__SSH 1 360 1 oce.nc EXPORTED 318 248 318 248 ocnt ww3t LAG=180 R 0 R 0 SCRIPR DISTWGT LR SCALAR LATLON 1 4

- Line 1: OASIS name for field in sending model OASIS name for field in sending model in target model Unused digit Coupling period #of transformations (here 1 interpolation) Restart file name Keyword: EXPORTED = field written only at the end of the simulation EXPOUT = field written at every coupling time step in restart file
- Line 2: # of points of the sending and target grids, names of the sending and target grids, LAG=dt of sending model
- **Line 3**: type of grid (**P**eriodical or **R**egional) and # of overlapping points for sending and target models
- **Line 4**: keywords for transformations to perform
- **Line 5**: Parameters for each transformation

▷ A basis of namcouple files can be found in the croco/SCRIPTS/SCRIPTS_COUPLING/OASIS_IN directory.

OASIS-MCT additional files

- Input files:
 - **Restart files**: they have to be build for initialization, and they will be automatically written at the end of the simulation for the next one: oce.nc, atm.nc, wav.nc
 - Namelist file: namcouple
- **Grid generated files**: these files are requested for interpolations, they are automatically built at the beginning of the simulation by all models: grids.nc, masks.nc, areas.nc
- Grid interpolation generated files: these files are built automatically by OASIS according to the previously cited grid files, and to SCRIPR settings in the namcouple: rmp_ww3t_to_ocnt_DISTWGT.nc, rmp_ocnt_to_ww3t_DISTWGT.nc ...
- Log files: several log files are produced by OASIS, they should be checked at the end of the simulation or if something goes wrong during the simulation:
 - nout.000000 : OASIS log file
 - crocox.timers_0000, wwatch.timers_0000 : OASIS log file for time statistics
 - debug.root.01, debug.root.02 : log files for the master processor for each model
 - debug.notroot.01 : log files for other processors for each model

Summary

- (1) Get the source codes
- (2) Set-up your configuration architecture and environment. You can use: croco/create_config.bash (all-prod-cpl option)
- (3) Compile:
 - First compile OASIS
 - Then, compile your models in coupled mode (with the same netcdf libraries and compilers)
 NB: CROCO can alternatively be compiled automatically when launching the run within the coupling toolbox
- (4) Perform pre-processing for your different models
- (5) Define the namelists and input files:
 - OASIS namcouple
 - Models' namelists: croco.in, ww3_grid.inp, ww3_shel.inp, namelist.input
 - Create restart files for the coupler
- (6) Running: launch the models simultaneously, e.g.: mpirun -np 4 wwatch : -np 4 crocox
- (7) Outputs: check log and ouptut files
- Þ If you have problems during your coupled run, check the dimensions of the grids in all grid files (models and OASIS grids and masks files)

Use can alternatively **use the coupling toolbox** to perform steps 5-6 more easily

(1) Get the source codes

Suggested work architecture:

mkdir \$HOME/croco mkdir \$HOME/oasis mkdir \$HOME/wrf mkdir \$HOME/ww3 mkdir \$HOME/CONFIGS

CROCO

cd \$HOME/croco

https://www.croco-ocean.org/croco-project/ tar -zxvf croco-v1.3.tar.gz tar -zxvf croco_tools-v1.3.tar.gz

Or

git clone <u>https://gitlab.inria.fr/croco-ocean/croco.git</u> git clone <u>https://gitlab.inria.fr/croco-ocean/croco_tools.git</u> OASIS cd \$HOME/oasis

git clone <u>https://gitlab.com/cerfacs/oasis3-</u> mct.git

WRF cd \$HOME/wrf

git clone https://github.com/wrf-croco/WRF.git

WPS

git clone <u>https://github.com/wrf-model/WPS.git</u> git checkout tags/v4.2

WW3

cd \$HOME/ww3

git clone https://github.com/NOAA-EMC/WW3

(2) Create environment and architecture

You can use the provided script: croco/create_config.bash (all-prod-cpl option)

Þ It will create your configuration directory with all the useful scripts

cd \$HOME/CONFIGS	# Machine you are working on # Known machines: Linux DATARMOR IRENE JEANZAY
cp \$HOME/croco/croco/create_config.bash .	# MACHINE="DATARMOR" # croco source directory
Edit create_config.bash : paths, settings ./create_config.bash	# CROCO_DIR=\$HOME/croco/croco # croco_tools directory # TOOLS_DIR=\$HOME/croco/croco_tools # Configuration name
You should now have YOUR_CONFIG directory cd \$HOME/CONFIGS/ YOUR_CONFIG	# MY_CONFIG_NAME=BENGUELA # Home and Work configuration directories # MY_CONFIG_HOME=\$HOME/CONFIGS MY_CONFIG_WORK=\$SCRATCH/CONFIGS
Check the myenv_mypath.sh file, eventually edit path if necessary source myenv_mypath.sh	# Options of your configuration # ## example for production run architecture and coupling with external models: options=(all-prod-cpl)

(3) Compile

OASIS

cd \$HOME/oasis/oasis3-mct/oasis3-mct/util/make_dir cp \$HOME/croco/croco/SCRIPTS/SCRIPTS_COUPLING/OASIS_IN/make.DATARMOR .

Check the paths in make.DATARMOR In make.inc set the include to the absolute path of your make.DATARMOR: include \$(home)/oasis/oasis3-mct/util/make_dir/make.DATARMOR

Compilation: make realclean -f TopMakefileOasis3 > oasis_clean.out make -f TopMakefileOasis3 > oasis_make.out

(3) Compile

CROCO

OPTION 1 : "A la mano"

```
cd $HOME/CONFIGS/YOUR_CONFIG/CROCO_IN
```

Check and edit : param.h => grid and MPI settings cppdefs.h => CPP options OA_COUPLING or/and OW_COUPLING, and MPI are mandatory jobcomp.h => paths, compilers, and libraries

Compile ./jobcomp

Eventually move the executable to another name : mv croco croco.frc or

mv croco croco.ow

OPTION 2 : automatic compilation when running

In \$HOME/CONFIGS/YOUR_CONFIG/mynamelist.sh

You can set online compilation of CROCO:

Online Compilation export **ONLINE_COMP=**1

NB! CROCO has to be re-compiled each time the grid or the MPI settings are changed

(3) Compile

WRF

OPTION 1 : "A la mano"

cd \$HOME/wrf/WRF

Classical compilation : ./clean –a ./configure Check and eventually edit configure.wrf, then: ./compile em_real

OPTION 2 : "A la mano" with some help

cd \$HOME/wrf/WRF

A few scripts are provided to help you compile : First set a few environment variables:

cat

\$HOME/croco/croco/SCRIPTS/SCRIPTS_COUPLIN G/SCRIPTS_TOOLBOX/MACHINE/DATARMOR/mye nv.DATARMOR* myenv.sh source myenv.sh

Then copy the appropriate configure files :

cp \$HOME/croco/croco/SCRIPTS/SCRIPTS_COUPLIN G/WRF_IN/CONFIGURE_WRF/DATARMOR/* .

./clean -a

cp configure.wrf.uncoupled configure.wrf ./compile em_real > compile_uncoupled.log

./clean -a
cp configure.wrf.coupled configure.wrf
./compile em_real > compile_coupled.log

OPTION 3: using provided scripts

cd \$HOME/CONFIGS/YOUR_CONFIG

Check your paths in myenv_mypath.sh

cd WRF_IN qsub DATARMOR.compile.wrf.pbs

(3) Compile

WPS

OPTION 1 : "A la mano"

cd \$HOME/wrf/WPS

Classical compilation : ./clean –a ./configure Check and eventually edit configure.wps, then: ./compile OPTION 2 : "A la mano" with some help

cd \$HOME/wrf/WPS

A few scripts are provided to help you compile : First set a few environment variables: cat \$HOME/croco/croco/SCRIPTS/SCRIPTS_COUPLI NG/SCRIPTS_TOOLBOX/MACHINE/DATARMOR/ myenv.DATARMOR* myenv.sh source myenv.sh

Then copy the appropriate configure files : cp \$HOME/croco/croco_tools/Coupling_tools/WRF_W PS/configure.wps.MACHINE .

./clean -a
cp configure.wrf.MACHINE configure.wps
./compile > compile_wps.log

(3) Compile

WW3

OPTION 1 : "A la mano"

cd \$HOME/ww3/model/bin

Check that the \$OASISDIR variable correctly refers to your OASIS compile directory

WW3 compilation requests 3 files:

- switch file: examples for coupling with ocean / atmosphere : switch_OASOCM / _OASACM. Mandatory switches for coupling are: MPI DIST COU OASIS OASOCM OASACM and CRT0 WNT0
- comp.COMPILER file, e.g. for Intel comp.Intel
- link.COMPILER file : provide useful options and links for compilers

./w3_clean -c ./w3_setup .. -c Intel -s OASACM ./w3_automake or only useful executables e.g.: ./w3_make ww3_prnc ww3_grid ww3_bounc ww3_strt ww3_shel ww3_ounf

If compilation is successful, executables are in ../exe, they should be moved: mkdir ../exe_OASACM ; mv ../exe/* ../exe_UNCOUPLED/.

OPTION 2: using provided script

A script to help you compile the various mode is also available: make_WW3_compil

cd \$HOME/CONFIGS/YOUR_CONFIG

Check your paths in myenv_mypath.sh

cd WW3_IN

Edit options in make_WW3_compil ./make_WW3_compil

(3) Compile

Tips in case of errors during compilation

In case of strange errors during compilation (e.g. "catastrophic error: could not find ..."), try one of these solutions:

- check your home space is not full ;-)
- check your paths to compilers and libraries (especially Netcdf library)
- check that you have the good permissions, and check that your executable files (configure, make...) do are executable
- check that your shell scripts headers are correct or add them if necessary (e.g. for bash: #!/bin/bash)
- try to exit/log out the machine, log in back, clean and restart compilation

In case of 'segmentation fault' error:

- try to allocate more memory with "unlimited -s unlimited"
- try to launch the compilation as a job (batch) with more allocated memory

Errors and tips related to netcdf library:

• with netcdf 4.3.3.1: need to add the following compilation flag for all models: -mt_mpi

the error associated to a missing -mt_mpi flag is of this type: "/opt/intel//impi/4.1.1.036/intel64/lib/libmpi_mt.so.4: could not read symbols: Bad value "

- with netcdf 4.1.3: do NOT add -mt_mpi flag
- with netcdf4, need to place hdf5 library path in your environment: export LD_LIBRARY_PATH=YOUR_HDF5_DIR/lib:\$LD_LIBRARY_PATH
- with netcdf 4, if you use the library splitted in 2: C part and Fortran part, you need to place links to C library before links to Fortran library and need to put both path in this same order in your LD_LIBRARY_PATH

(4) Preprocessing

CROCO

cd \$HOME/CONFIGS/YOUR_CONFIG/PREPRO/CROCO

Check and edit paths in start.m

Check and edit settings and paths in crocotools_param.m In matlab for climatological input files :

start

make_grid make_forcing make_bry make_ini Other example for runnning interannual with clim forcing : in crocotools_param uncomment: coads_time=(15.2188:30.4375:350.0313); coads_cycle=365.25; start

make_grid make_forcing make_QSCAT_clim make_bry make ini

cd \$DATAWORK/CONFIGS/YOUR_CONFIG//CROCO_FILES for year in 2017 2018 ; do for month in 01 02 03 04 05 06 07 08 09 10 11 12 ; do ln -s croco_frc.nc croco_frc_Y\${year}M\${month}.nc ; done ; done

for year in 2017 2018 ; do for month in 01 02 03 04 05 06 07 08 09 10 11 12 ; do ln -s croco_bry.nc croco_bry_Y\${year}M\${month}.nc ; done ; done

WRF

cd \$HOME/CONFIGS/YOUR_CONFIG/PREPRO/WRF_WPS

Rename and edit configure.namelist.wps_BENGUELA for your own configuration Check and edit settings and paths in run_wps.bash Check CPUs in job.wps.pbs and launch it: qsub job.wps.pbs

WW3

Follow WW3 preprocessing tutorial

Or eventually create grid files from croco grid with: make_ww3_grd_input_files_from_croco_grd.m

In -s croco_ini.nc croco_ini_Y2017M01.nc

Summary

- (1) Get the source codes
- (2) Set-up your configuration architecture and environment. You can use: croco/create_config.bash (all-prod-cpl option)
- (3) Compile:
 - First compile OASIS
 - Then, compile your models in coupled mode (with the same netcdf libraries and compilers)
 NB: CROCO can alternatively be compiled automatically when launching the run within the coupling toolbox
- (4) Perform pre-processing for your different models
- (5) Define the namelists and input files:
 - OASIS namcouple
 - Models' namelists: croco.in, ww3_grid.inp, ww3_shel.inp, namelist.input
 - Create restart files for the coupler
- (6) Running: launch the models simultaneously, e.g.: mpirun -np 4 wwatch : -np 4 crocox
- (7) Outputs: check log and ouptut files

Þ If you have problems during your coupled run, check the dimensions of the grids in all grid files (models and OASIS grids and masks files)

Use can alternatively **use the coupling toolbox** to perform steps 5-6 more easily

(5-6) "A la mano"

Steps 5 and 6 : 2 options: « A la mano » or using the coupling toolbox

First option for preparing the run (namelist and launch) : « A la mano »

(5) Define namelists and input files

You need to prepare restart files for OASIS:

cd \$HOME/CONFIGS/YOUR_CONFIG/

Copy useful script: **create_oasis_restart_from_calm_conditions.sh** provided in \$HOME/croco/croco/SCRIPTS/SCRIPTS_COUPLING/SCRIPTS_TOOLBOX/ROUTINES/OASIS_SCRIPTS/

Run it for each model with the following arguments: grid name, restart file name, type of model, list of variables to initialize to 0

Examples :

./create_oasis_restart_from_calm_conditions.sh CROCO_FILES/croco_grd.nc rst_oce.nc croco "CROCO_SST CROCO_SSH CROCO_NOCE CROCO_EOCE"

./create_oasis_restart_from_calm_conditions.sh WW3_FILES/ww3_201701.nc rst_wav.nc ww3 " WW3_T0M1 WW3_OHS WW3_DIR WW3_ACHA WW3_TAWX WW3_TAWY WW3_TWOX WW3_TWOY" ./create_oasis_restart_from_calm_conditions.sh WRF_FILES/wrfinput_d01 rst_atm.nc wrf "WRF_d01_EXT_d01_SURF_NET_SOLAR WRF_d01_EXT_d01_EVAP-PRECIP WRF_d01_EXT_d01_SURF_NET_NON-SOLAR WRF_d01_EXT_d01_TAUE WRF_d01_EXT_d01_TAUN WRF_d01_EXT_d01_TAUMOD WRF_d01_EXT_d01_PSFC WRF_d01_EXT_d01_WND_E_01 WRF_d01_EXT_d01_WND_N_01"

(5) Define namelists and input files

<u>OASIS</u>

Namelist: namcouple: models, coupled variables... **Input files**:rst_oce.nc

> rst_atm.nc rst_wav.nc

<u>CROCO</u> Namelist: croco.in : time steps, input files paths, parameters

Input files:croco_grd.nc croco_frc.nc croco_ini.nc or croco_rst.nc croco_bry.nc or croco_clm.nc

<u>WRF</u>

Namelist: namelist.input : dates, time step, schemes, param...

Input files:wrfinput_d01 wrflowinp_d01 wrfbdy_d01

WW3	
Namelists : ww3_grid.inp : grid settings, namelist/param	
options, time steps	
ww3_shel.inp : coupled flags, time steps, and fields	
C F Water levels	
C F Currents	
C F Winds	
\$ Type 7 : Coupled fields	
20090101 000000 360 20090201 000000	
Ν	
T0M1 OHS THM TAW TWO ACHA	
SSH CUR WND	
Input files: mod def.ww3 (generated by ww3 grid)	
restart.ww3 (generated by ww3 strt or previous run)	
nest.ww3 (generated by ww3 bounc)	
wind.ww3, current.ww3, ice.ww3 : if forcing needed	
(generated by ww3 prnc)	

2022

mpirun -np 10 wrfexe : -np 6 wwatch: -np 4 crocox

(5-6) Using the coupling toolbox

Steps 5 and 6 : 2 options: « A la mano » or using the coupling toolbox

Second option for preparing the run (namelist and launch) : with the coupling toolbox

(5-6) Define and run using the coupling toolbox

Coupling toolbox philosophy and workflow:

The user edit:

- * **myjob.sh** : settings for the job (dates notably)

Then the user launch the job with ./submitjob.sh

The coupling toolbox manages:

- CROCO compilation if requested
- getting models input files
- preparing OASIS restart files
- editing namelists (for models and OASIS)
- launching the run
- putting output files
- eventually looping for another job

(5-6) Define and run using the coupling toolbox

Coupling toolbox: configuration architecture

* More details: https://croco-ocean.gitlabpages.inria.fr/croco_doc/tutos/tutos.16.coupling.tools.html

(7) Outputs

Batch log file: YOUREXPER YYYYMMDD YYYYMMDD.o*

OASIS

Generated grid files: grids.nc masks.nc areas.nc

NB! If grids.nc or rmp*.nc files exist they will not be re-generated (useful for restart run, but can be source of error...)

Generated grid interpolation files: rmp ww3t to ocnt DISTWGT.nc rmp ocnt to ww3t DISTWGT.nc ... Generated restart files: rst oce.nc, rst atm.nc, rst wav.nc

(overwritten at the end of each simulation) Logs:

nout.000000

crocox.timers 0000, wwatch.timers 0000 debug.root.01, debug.root.02, ...

debug.notroot.01, debug.notroot.02, ...

CROCO

Output files: croco his.nc croco_avg.nc croco rst.nc Logs: croco.log

+ eventually standard output

redirected to batch log file if LOGFILE cppkey not defined **WW3**

Output files: out grd.ww3 => ww3.DATE.nc out pnt.ww3 => ww3.DATE spec.nc Logs: log.ww3

output.ww3

WRF

Output files: wrfout d01 DATE wrfxtrm d01 DATE wrfrst d01 DATE Logs: rsl.error.0000 rsl.out.0000

(7) Outputs

In case of error, you should check:

- The job output file: in \$CHOME/jobs_YOUREXPER : YOUREXPER_YYYYMMDD_YYYYMMDD.o*
- The models' log files: either in \$CHOME/jobs_YOUREXPER/YYYYMMDD_YYYYMMDD or in \$CWORK/rundir/YOUREXPER_execute/YYYYMMDD_YYYYMMDD

croco.log rsl.error.0000 log.ww3

 OASIS log files: nout.000000 debug.0?.000000

Typical issues are:

- Files not found: check your file names, and location
- Unconsitent dimensions of the grids in the different files: check models grid files, OASIS grids and masks files, OASIS remapping weight files, namelists of models and OASIS (namcouple)
- Unconsistency in exchanged variables: check namcouple
- Model blow up: check the log files, if blow up is due to CFL (unrealistic speed, or segmentation fault) decrease the model time step

NB! Usually OASIS errors are in debug.root.0X, and model erros are either in their log, or in the standard output (may be in the batch log if no redirection)

NB! If grids.nc or rmp*.nc files exist they will not be re-generated (useful for restart run, but can be source of error...)