Tutorial for practical sessions 1 and 2. January 17th and 18th

1. Purpose

Through this tutorial, we will review the basic instructions to work in practical sessions 1 and 2 of CROCO / PISCES.

For this, the first step is to enter the calculation server used in the first week of the Summer School where a simple simulation of the Benguela domain was configured and launched. To do this, follow the basic instructions of the NLHPC cluster.

2. A Discord server has been configured for these practical sessions

The objectives of this server are:

a) Propose a tool for the course participants to interact easily and quickly with the assistants/teachers and other students.

b) Post figures, scripts, and comments that may be of interest to the session.

c) Request help during practical work. Chat rooms and voice rooms have been created for this.

You can join this server through the following link:

https://discord.gg/4SErKYek

During each personal work session, there will be assistants and teachers who will answer your questions or requests for help, either by chat or by voice exchange (with or without screen sharing).

You can find the files associated with this tutorial in the folder http://mosa.dgeo.udec.cl/CROC02022/AdvancedCourse

3. Practice 1 (day one, 17th January)

General objective:

Prepare the CROCO-PISCES input files in the Benguela configuration using Matlab scripts and explore the outputs using ferret scripts.

a) Open Matlab according to the instructions indicated in Tutorial_01, section 7.2. If you work with Octave, follow the instructions in Tutorial_01 indicated in section 7.3.

Then write:

>> make_clim_pisces

You should get the following:

Add_po4: creating variables and attributes for the OA file Add_po4: creating variables and attributes for the Climatology file Add_sio3: creating variables and attributes for the OA file Add_o2: creating variables and attributes for the Climatology file Add_o2: creating variables and attributes for the OA file Add_o2: creating variables and attributes for the Climatology file Add_dic: creating variables and attributes for the OA file Add_dic: creating variables and attributes for the OA file Add_dic: creating variables and attributes for the Climatology file Add_dic: creating variables and attributes for the Climatology file Add_dic: creating variables and attributes for the Climatology file

Then write:

>> make_ini_pisces

You should get the following:

```
nitrate ...
Ext tracers: ro = 0 km - default value = NaN
    ext_tracers_ini: time index: 1 of total: 12
    ext_tracers_ini: horizontal interpolation of seasonal data
    ext_tracers_ini: vertical interpolation
phosphate ...
```

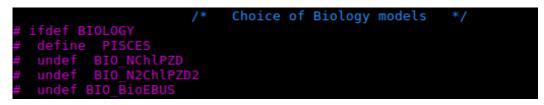
```
Ext tracers: ro = 0 km - default value = NaN
  ext_tracers_ini: time index: 1 of total: 12
  ext_tracers_ini: horizontal interpolation of seasonal data
  ext_tracers_ini: vertical interpolation
```

Then write:

>> make_dust

You should get the following:

```
Read in the grid...
Creating file
Getting dust for time index 1
Getting dust for time index 2
Getting dust for time index 3
Getting dust for time index 4
Getting dust for time index 5
Getting dust for time index 6
Getting dust for time index 7
Getting dust for time index 8
Getting dust for time index 9
Getting dust for time index 10
Getting dust for time index 11
Getting dust for time index 11
```


b) In your Benguela_LR Configuration go to *crocotools_param.m* and "activate"
 makepisces = 1

% (used in make_	ary data options (1 = process) _clim, make_biol, make_bry, and make_OGCM_frcst.m)
	% climatological data (for boundaries and nudging layers)
3	% lateral boundary data
makenpzd = 0;	% initial and boundary data for NChlPZD and N2ChlPZD2 models
makebioebus= 0;	% initial and boundary data for BioEBUS model
makepisces = 1;	% initial and boundary data for PISCES model

c) Open cppdefs.h and edit "define BIOLOGY"

	/*	Applications	*/
<pre># define</pre>	BIOLOGY		
# undef	FLOATS		
# undef	STATIONS		
# undef	PASSIVE TRACER		
# undef	SEDIMENT		
# undef	BBL		

d) In cppdefs.h "define PISCES"

e) Compile the code (as we made changes in cppdefs.h)

./jobcomp

f) Launch the simulation according to the instructions in Tutorial_01, section 8.

sbatch run_nlhpc.bash

g) Output files are:

croco_avg.nc croco_his.nc croco_rst.nc croco_diabio_avg.nc croco_diabio.nc

** croco_frcbio_avg.nc is an atmospheric deposition forcing of Fe (not an output from PISCES **)

h) To view the outputs, follow the instructions indicated in Tutorial_01, section 10:

- with the command ncdump, we can see the information in the croco_avg.nc file

ml purge ml netCDF-Fortran/4.4.4 ncdump -h CROCO_FILES/croco_avg.nc | less

- with the command **ncview**, we can preview **croco_avg.nc**

ml purge ml icc/2019.2.187-GCC-8.2.0-2.31.1 impi/2019.2.185 ncview/2.1.7 ncview CROCO_FILES/croco_avg.nc i) If we open croco_avg.nc with ncview, they should see the following:

		N	cview 2.1.7		- + ×
		no var	riable selected		
-	.1.7 David H. CT A VARIABLE	Pierce 29 Ma TO START ***	arch 2016		
Quit Jgauss	->1 (• C Meg: X1] [_] [AKt BFE La BSI CACO3 DCHL DFE DIA DIC DIC	Opts blowup_] Print
(5) 1d	vars (13) 2d	vars (12) 3	d vars (31) 4d vars	BSI FER	
Din:	Nane:	Min:	Current:	I GOC Meso	Units:
	time	Min:	Current:	NANO NCHL	Units:
	s_rho	Min:	Current:	NFE NH4	Units:
	eta_rho	Min:	Current:	N03 02	Units:
	×i_u	Min:	Current:	PO4 POC	Units:
				SFE Si TALK ZOO onega salt temp u v	

Figure 1: Graphical interface of ncview indicating the biogeochemical variables obtained from CROCO-PISCES (CaCO3, DCHL, NO3, DFE, O2, etc).

j) If we click on NO3, we would see the following

			view 2.1.7		- + ×	
			LA TEST MODEL			
displaying frame 3/4	g averaged Ni	itrate				
		0792195 to 75	9774 uwol N L_	1 (-0,00079219	to 40 shoup)	
		0 (x=22, y=-32		1 1-0.00073213.	5 CO 40 SHOWIT	
	, j					
Quit	->1	< Ⅱ ▶	▶ Edit ?	Delay:	Opts	
3gauss	Inv P Inv	C H X7	Linear Axes	Range Bi-	-lin Print	croco_avg.nc (on leftraru2) ×
ogauss			Linear nxes	Kange D1.	-IIU PLIUC	
ó	5 1	ió 15	20 25	30 :	35 40	
(5) 1d v	ars (13) 2d	vars (12) 3d	vars (31) 4d	vars		
Din:	Nane:	Min:	Current:	Маж:	Units:	
Scan:	time	131400	649800	909000	second	
	s_rho	-0,984375	-0,984375	-0.015625	-	
¥:	eta_rho	-38	-Y-	-25,8968	-	
X:	xi_rho	8	-X-	22	-	

Figure 2: Nitrate at deep level (s_rho: -0.984375).

k) If we open **croco_diabio_avg**.nc with **ncview**, we should see the following:

Ncview 2.1.7 David H. *** SELECT A VARIABLE Quit ->1. 3gaass Inv P In (5) 1d vars (13) 2d	no va Pierce 29 h TO START ****	CO3 CO3sat Irondep NFixo2 Nironsed PAR PBSi larch 201 PFeD PFEN PH PPNEHD PPN PPN PPN PPN PPN PPN PPN PPN PPN PP		- + X Opts .ownp_) Print
Din: Nane:	Min:	Current:	Max:	Units:
tine	Min:	Current:	Маж:	Units:
s_rho	Min:	Current:	Маж:	Units:
eta_rho	Min:	Current:	Маж:	Units:
xi_rho	Min:	Current:	Маж:	Units:

Figure 3: Graphic interface of noview indicating the Diagnostic variables obtained from PISCES.

I) If we open croco_frcbio_avg.nc with ncview, we should see the following:

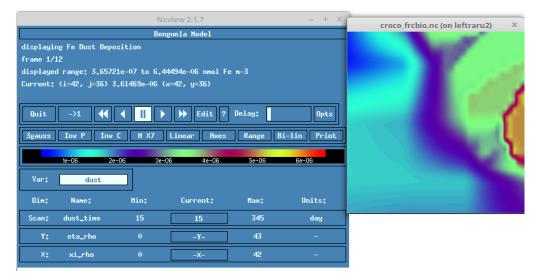


Figure 4: Atmospheric Fe deposition.

3.1. Viewing the outputs

General objective:

To visualize the results of the simulations that you will carry out throughout this session, you can use Ferret (PyFerret v7.63).

Ferret scripts are particularly convenient and fast for exploring the CROCO generated variables in netcdf format.

To load the Ferret sofware, we must write:

ml Miniconda3/4.5.12 conda activate FERRET pyferret

You will see the following:

I) Activity 1

a) Exploratory analysis of surface variables:

From the croco_avg.nc file obtained from the CROCO-PISCES simulation in the BENGUELA_LR Configuration, make the following figures for time t=1d and t=30d: NO3, Total Chlorophyll, Diatoms, Nanophytoplankton, Mesozooplankton, Microzooplankton, PO4 and Oxygen.

Use the ferret script: comp_varsurf_run1_run2.jnl to run a ferret script , type: >> go script_name.jnl [enter]

Example:

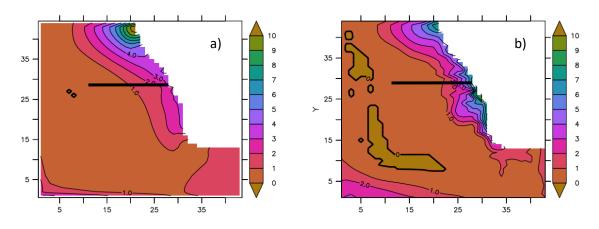
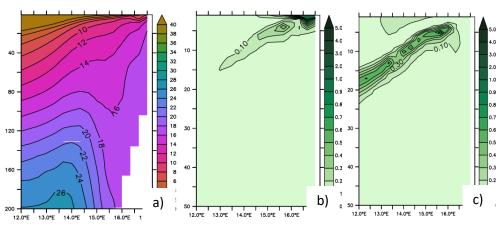



Figure 5: Surface Nitrate (NO3), (a) t=1d and (b) t=30d.

b) Exploratory analysis of longitudinal sections at 30°S (Fig. 5 indicates the transect)

From the croco_avg.nc file obtained from the CROCO-PISCES simulation in the BENGUELA_LR Configuration, make the following figures for time t=30d: NO3, Total chlorophyll (DCHL + NCHL), Chlorophyll in nanophytoplankton (NCHL), Chlorophyll in diatoms (DCHL), Diatoms and nanophytoplankton.

Example:

Figure 6: 30°S section, (a) Nitrate, (b) DCHL and (C) NCHL.

II) Activity 2 (day two, 18th January)

- Before you do any new experiment, save the basic simulation in a directory. For this, write the following:

mv croco_avg.nc croco_avg_ref.nc

croco_avg_ref.nc is the new name of the original file without modifications.

- Then create a directory where you keep the original files. For this, write the following:

mkdir REF

After this, move your file *croco_avg_ref.nc* to the created directory *REF.* For this, write the following:

mv croco_avg.nc croco_avg_ref.nc REF/

Repite this with every sensivity experiment that we will realize during the practice.

a) Iron (Fe) sensivity test

- open *namelist_pisces_ref* and modify In_ironsed = .false. (ref = .true.)

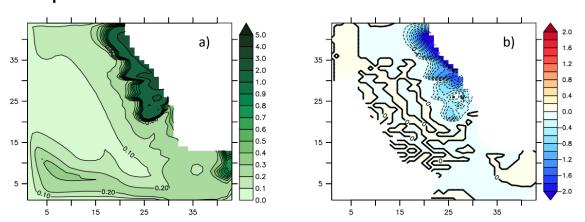
I			
&nampissbc	1	parame	ters for inputs deposition
	, , ,	, , , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ln_dust	=	.true.	! boolean for dust input from the atmosphere
ln_river	=	.false.	! boolean for river input of nutrients
ln_ndepo	=	.false.	! boolean for atmospheric deposition of N
ln_ironsed	=	.true.	! boolean for Fe input from sediments
sedfeinput	=	2E-9	! Coastal release of Iron
dustsolub	=	0.014	! Solubility of the dust
mfrac	=	0.035	! Fe mineral fraction of dust
wdust	=	2.0	! Dust sinking speed

Run the simulation:

sbatch run_nlhpc.bash

b) We will obtain the following files:

- croco_avg.nc
- croco_his.nc
- croco_rst.nc
- croco_diabio_avg.nc
- croco_diabio.nc


** Don't forget to support first simulation **

c) From the files obtained by changing ln_ironsed = .false. make the following surface graphs for t = 30d:

1. Standard sim chlorophyll/ new simulation chlorophyll - Standard chlorophyll (difference)

2.-Fe standard simulation / Fe new simulation-Fe standard (difference)

- 3. Diatoms standard simulation/ new simulation-Standard DIA (difference)
- 4.-Nano standard sim/ New Nano sim-Standard Nanophytoplankton (difference)
- 5.-Meso standard sim /Meso new sim-Meso standard (difference)
- 6. Micro standard sim/ Microzoo new sim-Microzoo standard (difference)
- -Use the following script for chlorophyll: comp_nofesed_run1_run2_chl.jnl
- -Use the following script for the other variables: comp_nofesed_run1_run2_var.jnl

Example:

Figure 7: (a) Chl standard simulation and (b) Chl new simulation - Chl standard

** Don't forget to save this new simulation **

III) Activity 3

General objective:

Perform sensitivity experiments by changing the values of some PISCES parameters and observe how these modifications affect the different variables in the model.

1) Experiment 1, change of **pislopen** parameter (initial slope of the PI curve in nanophytoplankton)

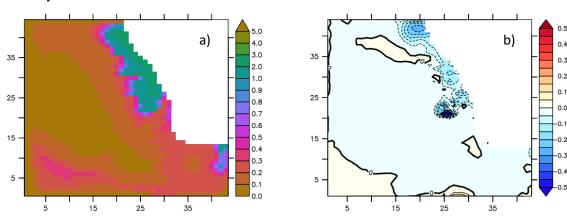
a) To develop this activity, open **namelist_pisces_ref** and increase the value by 50%. The reference value is 2, therefore its new value must be 3.

<pre>% amp4zprod</pre>	!	рага	mete	rs for phytoplankton growth for PISCES std - ln_p4z
pislopen	=	2.	!	P-I slope
pisloped	=	2.	1	P-I slope for diatoms
xadap	=	0.	1	Adaptation factor to low light
excretn	=	0.05	1	excretion ratio of phytoplankton
excretd	=	0.05	1	excretion ratio of diatoms
bresp	=	0.033	1	Basal respiration rate
chlcnm	=	0.033	1	Maximum Chl/C in nanophytoplankton
chlcdm	=	0.05	!	Maximum Chl/C in diatoms
chlcmin	=	0.004	1	Minimum Chl/c in phytoplankton
fecnm	=	80E-6	1	Maximum Fe/C in nanophytoplankton
fecdm	=	80E-6	!	Maximum Fe/C in diatoms
grosip	=	0.159	1	mean Si/C ratio
/				

- Run the simulation

sbatch run_nlhpc.bash

b) We will obtain the following files:


- croco_avg.nc
- croco_his.nc
- croco_rst.nc
- croco_diabio_avg.nc
- croco_diabio.nc

c) From the new netcdf files obtained, use croco_avg.nc and make the following surface figures with t = 30d:

1. Chlorophyll standard sim / Chlorophyll pislopen (+) - Standard chlorophyll (difference).

2. Nitrate standard sim / Nitrate pislopen (+) - Standard nitrate (difference).

Use the following ferret script for chlorophyll: *comp_pislopen_surf_run1_run2_chl.jnl* Use the following ferret script for the other variables: *comp_pislopen_surf_run1_run2_var.jnl*

Example

Figure 10: (a) Chl standard sim and (b) Chl pislopen (+) - Standard chl (difference).

d) Exploratory analysis of longitudinal sections at 33°S

From the new croco_avg.nc file obtained from pislopen (+) experiment, make the following figures for time t=30d:

1. Chlorophyll standard sim / Chlorophyll pislopen (-)/ Chlorophyll pislopen (-) - Standard chlorophyll (difference).

Use the ferret script: sect_xz_dif_run1_run2_chl.jnl

** Don't forget to save the simulation with changes in pislopen (+ 50%) **

2) Experiment 2, change of **pislopen** parameter (initial slope of the PI curve in nanophytoplankton)

a) To develop this activity, open *namelist_pisces_ref* and decreased the value by 50%. The reference value is 2, therefore its new value must be 1.

namp4zprod	!	parame	eter	rs for phytoplankton growth for PISCES std - ln_p4z
pislopen	=	2.	1	P-I slope
pisloped	=	2.	1	P-I slope for diatoms
xadap	=	0.	1	Adaptation factor to low light
excretn	=	0.05	1	excretion ratio of phytoplankton
excretd	=	0.05	1	excretion ratio of diatoms
bresp	=	0.033	1	Basal respiration rate
chlcnm	=	0.033	1	Maximum Chl/C in nanophytoplankton
chlcdm	=	0.05	1	Maximum Chl/C in diatoms
chlcmin	=	0.004	1	Minimum Chl/c in phytoplankton
fecnm	=	80E-6	1	Maximum Fe/C in nanophytoplankton
fecdm	=	80E-6	1	Maximum Fe/C in diatoms
grosip	=	0.159	1	mean Si/C ratio

-Run the simulation

sbatch run_nlhpc.bash

b) We will obtain the following files:

- croco_avg.nc
- croco_his.nc
- croco_rst.nc
- croco_diabio_avg.nc
- croco_diabio.nc

c) From the new netcdf files obtained, use croco_avg.nc and make the following surface figures with t = 30d:

1. Chlorophyll standard / Chlorophyll pislopen (-) - Standard chlorophyll (difference).

2. Nitrate standard / Nitrate pislopen (-) - Standard nitrate (difference).

Use the following ferret script for chlorophyll: *comp_pislopen_surf_run1_run2_chl.jnl* Use the following ferret script for the other variables: *comp_pislopen_surf_run1_run2_var.jnl.* d) Exploratory analysis of longitudinal sections at 33°S From the new croco_avg.nc file obtained from pislopen (-) experiment, make the following figures for time t=30d:

1. Chlorophyll standard sim / Chlorophyll pislopen (-)/ Chlorophyll pislopen (-) - Standard chlorophyll (difference).

Use the ferret script: sect_xz_dif_run1_run2_chl.jnl

** Don't forget to save the simulation with changes in pislopen (- 50%) **

3) Experiment 3, grazrat2 parameter change (grazing of mesozooplankton)

a) To develop this activity, open *namelist_pisces_ref* and decreased the value by 50%. The reference value is 0.75, therefore its new value must be 0.4.

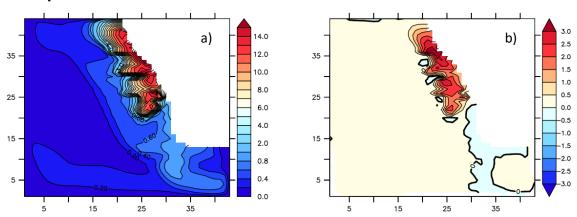
&namp4zmes	!	para	<pre>neters for mesozooplankton for PISCES std - ln_p4</pre>
_ part2	=	0.75	! part of calcite not dissolved in mesozoo guts
grazrat2	=	0.75	! maximal mesozoo grazing rate
resrat2	=	0.005	! exsudation rate of mesozooplankton
mzrat2	=	0.03	! mesozooplankton mortality rate
xpref2d	=	1.	! mesozoo preference for diatoms
xpref2n	=	0.3	! mesozoo preference for nanophyto.
xpref2z	=	1.	! mesozoo preference for microzoo.

-Run the simulation

sbatch run_nlhpc.bash

b) We will obtain the following files:

- croco_avg.nc
- croco_his.nc
- croco_rst.nc
- croco_diabio_avg.nc
- croco_diabio.nc


c) From the new netcdf files obtained, use croco_avg.nc and make the following surface figures with t = 30d:

1. Diatoms grazrat2 standard sim / Diatoms grazrat2 (-) - Standard diatoms (difference).

2. Nitrate grazrat2 standard / Nitrate grazrat2 (-) - Standard nitrate (difference).

3. Mesozooplankton grazrat2 standard sim / Mesozooplankton grazrat2 (-) - Standard mesozooplankton (difference).

4. Microzooplankton grazrat2 standard sim / Microzooplankton grazrat2 (-) - Standard microzooplankton (difference).

Use the ferret script: comp_varsurf_run1_run2_grazrate.jnl

Figure 10: (a) Diatoms standard sim and (b) Diatoms grazrate2 (-) - Standard diatoms (difference).

** Don't forget to save the simulation with changes in grazrate2 (- 50%) **

Example:

Ferret script list:

- 1. comp_varsurf_run1_run2.jnl
- 2. sect_xz_var_croco.jnl
- 3. comp_nofesed_run1_run2_chl.jnl
- 4. comp_nofesed_run1_run2_var.jnl
- 5. comp_pislopen_surf_run1_run2_chl.jnl
- 6. comp_pislopen_surf_run1_run2_var.jnl
- 7. sect_xz_dif_run1_run2_chl.jnl
- 8. comp_varsurf_run1_run2_grazrate.jnl