Coastal and Regional Ocean COmmunity model

Sediment dynamics

Introduction to (sand) sediment transport

rachid.benshila@legos.obs-mip.fr

https://croco-ocean.gitlabpages.inria.fr/croco_doc

Outline

Background

Modes of sediment transport

Cross-shore (sand) transport

Longshore (sand) transport

Sediment balance

Background

Sediment properties

Sediment can be characterized by grain size

- cohesive: fine grain => in suspension in the surf zone on energetic coasts, deposit soon deeper areas (estuaries, lagons...)
- non cohesive from 0.1 mm to 64 mm, erosion and deposition:
 - set in motion by waves
 - cross-shore and alongshore exchanges
 - => context of this presentation : sand beaches and waves

Transport

We distinguish:

- processes that lead to net transport of sediment onshore or offshore (cross-shore transport)
- processes tending to move sediment alongshore (longshore sediment transport)
- => Both occurs simultaneously

Set of motion:

- generally no erosion and transport by unidirectional currents (except RIP, strong longshore drift)
- Instead:
 - motion by oscillatory currents due to waves and wave-breaking turbulence
 - transport by mean flow: undertow, stokes drive, wind-drive

Direction of net transport of sediment: the balance of all

- incident and wave-generated on/offshore and alongshore flows
- wind-driven currents
- tidal flows.

Bedload

Transport in contact with the bed: rolling, sliding

- during storms
- in the breaking zone

Generation of ripples, dunes:

- sediment in suspension close to the bed
- vortex from breaking

Hard to mesure, large uncertainty

Boundary layer, shear stress

Unidirectionnel current (tide, rip, wind)

Boundary layer:

- flow velocity increasing away from the bed to a maximum
- -flow above unaffected by conditions at the bed.
- effect of roughness and bedrooms

$$au \sim rac{\partial u}{\partial z}$$

Single wave

Shear stress

Usually derived from the slope of the velocity profile:

- unidirectionnel flow: permanent thick boundary layer
- oscillatory flows (wave cycle): grows and diminish, reversal of currents => max under through and crest

=> effect on measurement and modeling

Max orbital velocity (from linear theory)

$$u_0 = \frac{\pi H}{T \sin kh}$$

Estimation of shear stress

$$\tau_w = 0.5 \rho f_w u_0^2$$

Wave friction parameter

$$f_w \sim exp\left(\frac{K_s}{d_0}\right)$$

Definition Shield number

Reynolds parameter= inerty/viscosity=
$$\mathbf{Re} = \frac{u_*d}{v}$$
 (~fluid instability)

in which v is the kinematic viscosity and the shear velocity u_* is defined as $u_* = \left(\frac{\tau_b}{a}\right)^{1/2}$

Shield's parameter= drag/gravity=
$$\frac{\tau_c}{(\rho_s - \rho)gd}$$

(Dimensionless stress, critical threshold ~sediment instability)

 $\tau_{\rm b} = \frac{1}{\Omega} \rho f U^2$ With bed shear stress

- Sinnakaudan et al. (2006) data
- lowest Shields stress in the sand range (0.06-2.00 mm). Small mass but too large for adhesion forces to play.
- Silt/clay, smaller size, but higher shear stress for motion. Large adhesion forces
- Shields parameter constant 0.06 for gravel => Shields stress here becomes a simple function of grain size.

Non-cohesive particles

Sediment particles vertical displacement is subject to their weight:

$$P = \frac{\pi}{6} (\rho_s - \rho) g D^3$$

And drag force:

$$F = \frac{1}{2} \rho C_x \left(\frac{\pi D^2}{4}\right) W^2$$

where W is the fall velocity ("settling velocity") W presents various forms, depending of the Reynolds number value

$$Re_{w} > 1000 \Rightarrow W = \sqrt{\frac{8}{3} \rho' gD}$$

$$Re_{\mathbf{w}} < 1 \Longrightarrow W = \frac{\rho' g D^2}{18 \mathbf{v}}$$

$$Re_{\mathbf{w}} < 1 \Rightarrow W = \frac{\rho' g D^2}{18 \nu}$$
 where $\rho' = (\rho_s - \rho)/\rho$ and \mathbf{v} the kinematic viscosity

Definition Depth of closure

The offshore depth beyond which beach profiles is "constant is known as the **depth of closure**. Seaward of this, although waves can move sediment, net sediment transport is not significant.

Figure 8.6 Wave heights and water depths for incipient motion for a wave with a 15-s period (from Komar and Miller 1975).

$$h_{\rm c} = 2.28 H_{\rm e} - 68.5 \left(\frac{H_{\rm e}^2}{gT_{\rm e}^2}\right)$$

based on the assumption that $(\rho_s - \rho)/\rho = 1.65$.

Waves at nearshore

Sediment transport

In general

- Sediment and Waves:
 - as soon as waves feel the sea bed, sediment will be in motion
 - waves tends to stir the sediment
- Transport modes:
 - Bed load (grain-to-grain interactions)
 - Suspended load ('in the fluid' turbulence versus gravity)
 - By flow and waves
 - Crosshore and alongshore

Bedload

Moving sediment can be organized in small bedrooms (ripples, mega ripples)

Bedload

Bedload

Water column

$$q = u \cdot C$$

$$u = \overline{u} + \tilde{u}_{hf} + \tilde{u}_{lf}$$

$$C = \overline{C} + \tilde{C}_{hf} + \tilde{C}_{lf}$$

q: sediment concentration

u: velocity

C: concentration

lf: low frequency

hf: high frequency

$$q \approx \overline{u}\overline{C} + \tilde{u}_{hf}\tilde{C}_{hf} + \tilde{u}_{lf}\tilde{C}_{lf}$$

Location A:

- symmetric waves
- inactive bed
- transport = 0

Sinusoidal

Location B:

- skewed waves
- ripple on sea bed

Location C:

- sheet flow (flat bed)
- skewed waves
- bound infra gravity waves

Sub-harmonic interactions

Skewed waves

SURF ZONE

RETURN FLOW TURBULENCE & MIXING

large onshore movement

SUSPENSION AT RIPPLES

Skewed waves

- Skewed waves stir and transport sediment
- Near the bed concentration in phase with u=> onshore transport
- Higher up in the vertical, lower concentration and phase shift
 - => small offshore transport
- Overall effect
 - => onshore transport

Infragravity

- Bound infra gravity waves transport sand stirred by gravity waves
- Large concentrations under high waves in the group coincide with bound infra gravity trough (offshore infra gravity orbital motion)

Overall effect=> offshore transport

Balance

- Skewed waves : onshore transport
- Bound infragravity waves : offshore transport

Overall effect => onshore >> offshore

Asymmetry

Location D:

- Asymmetric waves
- Undertow
- Breakers

Undertow

Breakers

Sediment is stirred by breaking-induced turbulence, not by near-bed wave-driven flow. Effect on transport is unclear.

Breakers

- large sediment concentrations
- undertow
- => transport direction ??

TURBULENCE & MIXING

Breakers

Breaking waves zone:

- Breaking, asymmetric gravity waves stir sediment
- Sediment transport
 - Onshore by asymmetric waves
 - Offshore by undertow
- In general
 - => few breaking waves => onshore transport
 - => many breaking waves => offshore transport

Location E:

- -infragravity waves
- -Undertow

Swash zone (storm case):

- Water motion dominated by infragravity waves
- Large concentrations (breaking-induced turbulence)
- Sediment transport :
 - unclear
 - field experiments : onshore and offshore ...
- Potential offshore contributions by undertow

A: no transport

B: little transport (skew waves and ripples)

C: onshore transport in shoaling zone (skewed waves)

D: on/offshore transport in break-in zone (asym waves / undertow)

E: on/offshore transport in swash zone (infra gravity waves)

=> transport rate increase

Toward long term:

- Locations A-D shift as a function of offshore wave conditions
- A specific cross-shore location experiences many different conditions during a year
- Which are dominant:
 - Frequent low energy conditions?
 - Occasional storm?

Particular case of rip currents:

- Sediment stirred by gravity waves, transported by currents
- Minor role (onshore) in between the rip currents
- Other mechanisms minor (no undertow!)

Gravity waves stir sediment

Breaking induced alongshore current transport sediment

=> Littoral drift

Drivers of sediment transport in the beach and nearshore zone:

- beach drifting on the swash slope driven primarily by oblique wave action
- transport by wave-generated longshore currents in the surf zone
- transport seaward of the breaker zone by residual tidal currents and wind-driven currents.

Beach drifting

- -Swash run-up perpendicular to the wave crest
- -Return flow in the backwash occurs parallel to the beach slope (gravity)
- => saw-tooth alongshore motion

Surf zone transport : summary

- -no transport from oscillatory wave motion
- -sediment motion set by wave motion and breaking induced current
- -alongshore currents generated in the surf zone by waves breaking at an angle to the shoreline
- wind and tides currents

Examples

Prediction

Longshore transport empirical formulae:

Correlated with longshore wave energy flux : $q \sim \rho g^{1.5} H_b^{2.5} \sin \theta_b \cos \theta_b$

- Shore normally incident (theta=0° transport is 0)
- Transport increases when wave height increases
- Transport is maximum for theta = 45°

Sediment balance

- bed levels changes are a result of gradients in the sediment transport rates
- mass balance equation (Exner equation)

$$\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} = \frac{\partial z}{\partial t}$$

Conclusion

- Wide range of complex phenomena at different scales
- Drivers: waves and depth
- Complexity => hard to observe and model
- Very fast review, non-exhaustive:
 - Cohesive sediments (floculation in the water column)?
 - Gravels
 - Mangroves, estuaries ...

Let's dive into CROCO!!