

Coastal and Regional Ocean COmmunity model

A few words about the CROCO model

- CROCO is an ocean model developped at IRD, INRIA, Ifremer, CNRS and SHOM (french institutes)
- It is the "next generation " of ROMS_AGRIF, one of ROMS model branches
- CROCO is mainly used for regional ocean modeling, can be coupled to biogeochemical models (e.g. PISCES), waves, atmosphere, sediment (see information in https://www.croco-ocean.org)
- CROCO has sigma coordinates
- CROCO can also have embedded zooms

The Benguela CROCO test configuration

- Benguela configuration used to test and implement new parameterizations in CROCO (initially developped by Pierrick Penven, IRD)
- Low resolution: 1/3°, small number of grid point: nx=41,ny=42, n_sigma=32 (vertical)
- inputs files are netcdf files created using CROCO preprocessing tools (Matlab)
 - (see information in https://www.croco-ocean.org/documentation/)

The pre-processing tools will be used this afternoon

We will describe briefly the netcdf input files needed for CROCO-PISCES

the Benguela CROCO test configuration

- croco_grd.nc: 2D (x,y) grid file containing the bottom topography (h), land mask (mask_rho), and other grid parameters.
 - You can use noview to look at the files: "noview file.nc"

Bottom topography

 croco_clm.nc: 4D (x,y,z,t) U,V,T,S,zeta in the model domain from World Ocean Atlas BGC variables: GLODAP & ORCA2- PISCES (global run) climatologies nutrients (NO3,PO4, Si, Fer) + oxygen (O2) + DIC,DOC, TALK (carbonates) U,V are computed using geostrophy and a level of reference at 1000 m Only values near the 4 open boundaries are used Other PISCES variables (e.g. phyto, zoo,...) = constant at boundaries

time=12 values = monthly climatology

croco_runoff.nc: 1 D file (t) with river outflow: here two rivers in the region
 From global monthly runoff climatology containing 925 biggest rivers over the world,
 Dai and Trenberth, 2000

=> not used in the practical sessions

River NO3 concentration (µmol/kg)

- croco_frc.nc: 3D (x,y,t) atmospheric forcing file containing the wind stress, heat and freshwater fluxes.
 - Climatological forcing (12 months) from Quikscat (Wind stress) and COADS (fluxes) ocean values are interpolated over land

Meridional wind stress (january) from Quikscat climatology

Seasonal cycle of meridional wind stress

croco_ini.nc: 3D (x,y,z) initial condition file (here january, so identical to 1st file of croco_clm.nc)

- **croco_frcbio.nc**: 3D (x,y,t) iron dust deposition file (climatological)

dust, january

Overview of the model output (reference simulation, 1 month)

Overview of the model output (1 month of simulation)

SST

Ferret script : plot_xy_sst.jnl

Surface wind stress

mean state (1-30 days average)

Ferret script : plot_xy_windstress.jnl

Surface Nitrate

Ferret script : plot_xy_no3_surf.jnl

Surface Iron (in nanomol L⁻¹)

Ferret script : plot_xy_fe_surf.jnl

Surface chlorophyll

Ferret scripts : plot_xy_chl_surf.jnl; plot_xy_nchl_dchl_surf.jnl

Temperature vertical section

Ferret script : plot_xz_temp.jnl

Meridional velocity section

mean state (25-30 days average)

meridional velocity (V, cm/s),l=6,j=25

Ferret script : plot_xz_v.jnl

Nitrate section

Ferret script : plot_xz_no3.jnl

Fer section

Ferret script : plot_xz_fer.jnl

Total chlorophyll section

Ferret script : plot_xz_chl.jnl

NCHL (chl in nanophyto) section

Ferret script : plot_xz_nchl.jnl

Testing some parameters with PISCES (second day)

Iron flux from sediments = can be limiting (California, Peru,...) Messié and Chavez (2015)

Dust containing Iron (croco_frcbio.nc)

Sediment-derived iron flux from the sediment can be switched on/off in PISCES

Testing some parameters with PISCES (second day)

pislope/pislope2 = photosynthesis-Irradiance relationship

Testing some parameters with PISCES (second day)

Grazing rates

- · Results are very very sensitive to the grazing rates
- Mesozooplankton: easily predictable changes because at the end of the food web

Microzooplankton: much more difficult because it grazes and it is grazed => non

