Biogeochemical modelling with PISCES

Vincent Echevin (IRD/IPSL/LOCEAN)

Olivier Aumont (IRD/IPSL/LOCEAN)

Instituto francés de Investigación para el Desarrollo

The Pisces model

- Based on the Aumont et al. (2015) paper (no updated documentation yet)
- Coupled with NEMO ocean model and ROMS-AGRIF/CROCO model
- Not all the model is detailed, only the «most important » processes (subjective choice)
- Different versions of PISCES are available depending on the CROCO version :

PISCESv0 in old ROMS-agrif/earlier CROCO versions

PISCESv2 (in newest CROCO version)

=> detailed description of the common parameterizations of PISCESv0 and PISCESv2

+ brief overview of the new potentialities of PISCESv2

=> there may be small differences with parameterizations in Aumont et al. (2015) but the philosophy is the same

The Pisces model

Geosci. Model Dev., 8, 2465-2513, 2015 www.geosci-model-dev.net/8/2465/2015/ doi:10.5194/gmd-8-2465-2015 © Author(s) 2015. CC Attribution 3.0 License.

PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies

O. Aumont¹, C. Ethé², A. Tagliabue³, L. Bopp⁴, and M. Gehlen⁴

¹Laboratoire d'Océanographie et de Climatologie: Expérimentation et Approches Numériques, IPSL, 4 Place Jussieu, 75005 Paris, France ²Institut Pierre et Simon Laplace, 4 Place Jussieu, 75005 Paris, France ³Dept. of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, UK ⁴Laboratoire des Sciences du Climat et de l'Environement, IPSL, Orme des Merisiers, 91190 Gif-sur-Yvette, France

Correspondence to: O. Aumont (olivier.aumont@ird.fr)

Received: 11 December 2014 – Published in Geosci. Model Dev. Discuss.: 16 February 2015 Revised: 29 June 2015 - Accepted: 4 July 2015 - Published: 13 August 2015

Pisces model structure

nstitut de Recherche le Développement Instituto francés de Investigación para el Desarrollo

Equation for Nanophytoplankton (small phytoplankton) Equation for Nanophytoplankton (small phytoplankton)

Equation for Nanophytoplankton (small phytoplankton) Equation for Nanophytoplankton (small phytoplankton)

Calculation of PAR (Photosynthetically Available Radiation) Calculation of PAR (Photosynthetically Available Radiation) to compute photosynthesis to compute photosynthesis

Photosynthesis : transformation of mineral/inorganic matter

into living organic matter

Optical model required to compute the penetration of light in the water column

 \Rightarrow 3 wavelengths in PISCES optical model: red, green, blue

 \Rightarrow PAR= PAR_r +PAR_g+ PAR_b, Qsol = solar radiation at the surface of the ocean

z

 $k_i(z)$

PAR

Qsol

i

Equation for Nanophytoplankton (small phyto cells) Equation for Nanophytoplankton (small phyto cells)

$$
\frac{\partial P}{\partial t} = \left(1 - \delta^{nano}\right)\mu^{nano}P - m^{nano}\frac{P}{K_{nano} + P}P - w_p^{nano}P^2 - g^{micro}(P)Z - g^{micro}(P)M
$$

\nProduction
\n
$$
\mu^{nano} = \mu_P \left(1 - e^{\frac{\alpha^P(\frac{Chl}{C})P_{PAR}}{\mu_P L_{lim}^{nano}}}\right) \frac{P_{AR}}{L_{lim}^{nano}}
$$
\n
$$
\mu_P = ab^{cT}
$$
 = temperature dependent

Equation for Nanophytoplankton (small phyto cells) Equation for Nanophytoplankton (small phyto cells)

$$
\frac{\partial P}{\partial t} = \frac{(1 - \delta^{nano})\mu^{nano}P}{\text{Production}}
$$
\n
$$
\mu^{nano} = \mu_{P} \left(1 - e^{\frac{\alpha P (\frac{Ch}{C})P_{PAR}}{\mu_{P}L_{lim}^{hano}}} \right) \frac{\text{PAR= photosynthetically}}{\mu_{lim}} \text{ available radiation}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{cT} \text{ temperature dependent}
$$
\n
$$
\mu_{P} = ab^{
$$

Equation for Diatoms (big phyto cells) Equation for Diatoms (big phyto cells)

$$
\frac{\partial D}{\partial t} = \underbrace{(1 - \delta^{diat})\mu^{diat}D}_{\text{Production}} - m^{diat} \frac{D}{K_{diat} + D}D - w_p^{diat}D^2 - g^{micro}(D)Z - g^{meso}(D)M
$$

Diatoms need Silicate for their exoskeleton

Limiting nutrients : PO4, NO3, NH4, Fe , Silicate (Si)

$$
\begin{aligned}\n\overrightarrow{L_{Si}^{diat}} &= \frac{Si}{K_{Si}^{diat} + Si} \\
L_{lim}^{diat} &= \min(L_{po4}^{diat}, L_{Fe}^{diat}, L_{no3}^{diat} + L_{nh4}^{diat}, \overrightarrow{L_{Si}^{diat}})\n\end{aligned}
$$

Equation for Diatoms (big phyto cells) Equation for Diatoms (big phyto cells)

Equation for Diatoms (big phyto cells) Equation for Diatoms (big phyto cells)

$$
\frac{\partial D}{\partial t} = (1 - \delta^{diat}) \mu^{diat} D - m^{diat} \frac{D}{K_{diat} + D} D - w_p^{diat} D^2 - g^{micro}(D)Z - g^{meso}(D)M
$$

Two terms : « linear » and quadratic mortality (= aggregation of cells)

Aggregation increases when nutrient stress increases, cells become more sticky, and merge into big sinking particles:

$$
\widehat{w_p^{diat}} = w_p^{min} + w_p^{max} \times (1 - \widehat{L_{lim}^{diat}})
$$

Equation for micro-zooplankton (small cells) Equation for micro-zooplankton (small cells)

Instituto francés de Investigación para el Desarrollo

Equation for micro-zooplankton (small cells) Equation for micro-zooplankton (small cells)

- p_N=preferential grazing of zoo for species (N) over all species I (= P,D,POCs):

$$
g^{micro}(N) = g^{micro} \frac{p_N^{micro} N}{K_G^{micro} + \sum_{I} (p_I^{micro} I)}
$$

 p_{poc} < p_{Di} < p_{Nano} => zoo prefers to graze nanophyto (P), then big phyto (Diatoms), then POC

- grazing coefficient increases with temperature: same dependence as phytoplankton : b^{cT}

Equation for meso-zooplankton (big cells) Equation for meso-zooplankton (big cells)

Equation for meso-zooplankton (big cells) Equation for meso-zooplankton (big cells)

- Meso zooplankton grazes on two phyto and two detritus size classes (POCs and POCb)

- p^{meso}_N=preferential grazing of M for species (N) over all species I (P,D,POCs,POCb):

$$
g^{meso}(N) = g^{meso} \frac{p_N^{meso} N}{K_G^{meso} + \sum_{I} (p_I^{meso} I)}
$$

\n
$$
p_N^{meso} = \frac{\gamma_N N}{\sum_{I} (\gamma_I I)} = \text{not a constant (as for micro zoo)}
$$

\n
$$
= \text{Meso zoo easts preferentially the most abundant prey}
$$

Equation for dissolved organic matter (DOM) Equation for dissolved organic matter (DOM) (carbon only : DOM =DOC) (carbon only : DOM =DOC)

(-Denit if O_2 low)

Equation for dissolved organic matter (DOM) Equation for dissolved organic matter (DOM) (carbon only : DOM =DOC) (carbon only : DOM =DOC)

Aggregation terms: effect of turbulence=> sh= 1/(time scale): 1s in mixed layer, 100s below mixed layer

 Φ _i Φ_i = parameters for probability of encounter of particules

Equation for (small) particulate organic matter (POCs)

Equation for (small) particulate organic matter (POCs) Equation for (small) particulate organic matter (POCs)

Sinking of small particules Sinking velocity Same equation as vertical advection of dissolved tracer C : - w .∂C/∂z w = vertical velocity of the fluid In present case : wPOCs = sinking velocity of particules (increases with depth) zmel z

 $w^{POC}=w^{POC}_{min}+(w^{POC}_{max}-w^{POC}_{min})\max(0,\frac{z-z_{mel}}{2000m}) \quad \quad \text{Zmel=max(Zmxl,Ze)}$

wPOC

Differences between Nitrogen and Phosphate pools (1)

$$
\frac{(\frac{\partial NO_3}{\partial t} + \frac{\partial NH_4}{\partial t}) \cdot \frac{\partial PO_4}{\partial t} = Nfix - Denit
$$
\n
$$
\frac{\text{Nitrogen Fixation}}{\text{Definition: when } O_2 \text{ reduces,}
$$
\n
$$
\frac{\text{Nitrogen Fixation}}{\text{mineralization: when } O_2 \text{ reduces,}
$$
\n
$$
\frac{\text{Definition (Denit term in DOC equation)}}{\text{remineralization instead of } O_2}
$$
\n
$$
Denit = R_{NO3} \lambda_{DOC}^{\star} (1 - \Delta(O_2)) DOC
$$
\n
$$
1.00 - 1.00
$$

Oxygen equation :

$$
\frac{\partial O_2}{\partial t} = O_2^{\text{ut}}(\mu_{\text{NH}_4}^P + \mu_{\text{NH}_4}^D D) + (O_2^{\text{ut}} + O_2^{\text{nit}})
$$
\n
$$
\frac{(\mu_{\text{NO}_3}^P + \mu_{\text{NO}_3}^D D) + O_2^{\text{nit}} N_{\text{fix}}}{(\mu_{\text{NO}_3}^P + \mu_{\text{NO}_3}^D D) + O_2^{\text{nit}} N_{\text{fix}}}
$$
\n
$$
= O_2^{\text{ut}} \gamma^Z (1 - e^Z - \sigma^Z) \sum_I g^Z (I) Z - O_2^{\text{ut}} \gamma^M
$$
\n
$$
= O_2^{\text{ut}} \gamma^B (I) + \sum_I g^M (I) + \sum_I g^M (I) + O_2^{\text{ut}} \gamma^M R_{\text{up}}^M
$$
\n
$$
= O_2^{\text{ut}} \text{Remin} - O_2^{\text{nit}} \text{Nitrif}
$$
\n
$$
= O_2^{\text{uit}} \text{Remin}
$$
\n
$$
= O_2^{\text{nit}} \text{Nitrif}
$$
\n
$$
= O_2^{\text{int}} \text{Nirtif}
$$
\n
$$
= O_2^{\text{int}} \text{Nirtif}
$$
\n
$$
= O_2^{\text{int}} \text{Nitrif}
$$
\n
$$
= O_2^{\text{int}} \text{Nirtif}
$$
\n
$$
= O_2^{\text{int}} \text{Nitrif}
$$
\n
$$
= O_2^{\text{int}} \text{N trif}
$$

 O_2^{ut} , O_2^{nit} = different O/C Redfield ratios for new and regenerated production

At depth (out of euphotic layer) : $\partial_{\rm t} {\sf O}_2$ ~ - ${\sf O}_2$ ^{ut} Remin - ${\sf O}_2$ ^{nit} Nitrif

Oxygen equation :

$$
\frac{\partial O_2}{\partial t} = O_2^{\text{ut}}(\mu_{\text{NH}_4}^P + \mu_{\text{NH}_4}^D D) + (O_2^{\text{ut}} + O_2^{\text{nit}})
$$

\n
$$
(\mu_{\text{NO}_3}^P + \mu_{\text{NO}_3}^D D) + O_2^{\text{nit}} N_{\text{fix}}
$$

\n
$$
-O_2^{\text{ut}} \gamma^Z (1 - e^Z - \sigma^Z) \sum_I g^Z (I) Z - O_2^{\text{ut}} \gamma^M
$$

\n
$$
(1 - e^M - \sigma^M) \left(\sum_I g^M (I) + \sum_I g_{\text{FF}}^M (I) \right) M -
$$

\n
$$
-O_2^{\text{ut}} \text{Remin} - O_2^{\text{nit}} \text{Nitrif}
$$

\n
$$
- \mathbf{u} \cdot \partial_x O_2 - \mathbf{v} \cdot \partial_y O_2 - \mathbf{w} \cdot \partial_z O_2 + \partial_z (K \partial_z O_2) + \text{Diff}_h (O_2) + F_{\text{atm}}
$$

\n
$$
3D \text{ advection}
$$
 vertical mixing horizontal air-sea mixing flux

...same physical terms for all of PISCES tracers

Many parameters in PISCES....

 O_2^{hit}

 $r_{\text{NH}_4}^{\star}$
 $r_{\text{NO}_4}^{\star}$
 $\rho_{\text{N,C}}^{\star}$

 $r_{\rm CaCO_3}$

 $molO₂ (mol_C)⁻¹$

 $molN (molC)⁻¹$

 $molN$ (molC)⁻¹

 $molN (molC)⁻¹$

 a_1

 a_2

 a_3

 a_4

 a_5

 $(\mu \text{mol} \text{CL}^{-1})^{-1} \text{d}^{-1}$

 $(\mu \text{mol} \text{CL}^{-1})^{-1} \text{d}^{-1}$

 $(\mu \text{mol } CL^{-1})^{-1}d^{-1}$

 $(\mu \text{mol} \text{CL}^{-1})^{-1} \text{d}^{-1}$

102

3530

5095

114

Aggregation rate (turbulence) of $DOC \rightarrow POC$

Aggregation rate (turbulence) of $DOC \rightarrow GOC$

Aggregation rate (Brownian) of $DOC \rightarrow POC$

Aggregation rate (Brownian) of $DOC \rightarrow POC$

Aumont et al., 2015

 $32/122$

 $105/16$

16/122

 $3/5$

 0.3

O / C ratio of nitrification

C/N ratio of ammonification

Institut de Recherche

pour le **Développement** A N C E

Instituto francés de Investigación para el Desarrollo

C/N ratio of denitrification

N / C Redfield ratio

Rain-ratio parameter

More sophisticated PISCESv2 options : PISCES-quota

PISCES-QUOTA (39/40 tracers) 24/25 in PISCES std

More sophisticated PISCESv2 options : Ligands for Fe

- Dissolved Fe assimilated by phyto mostly in its complexed for with ligands (L)

- ligand concentration is constant in previous version v0,v1

=> prognostic equation for1 ligand concentration in v2 if chosen (other version with more L)

More sophisticated PISCESv2 options : sediment module

In the default configuration, exchanges with the sediments are modeled based on a simple metamodel proposed by Middelburg et al. (1996):

$$
F_{\text{sed}} = F(NO_{3}, O_{2}, Z, ...)
$$

New process model : new chemical species : Sulfate, FeS,… dissolved and precipitate

=> long integration time (~100s of years) to reach equilibirum => very new in CROCO (not yet used), soon in West Africa (Senegal) (P.-A. Auger, IRD/LOPS)

More sophisticated PISCESv2 options : diurnal More sophisticated PISCESv2 options : diurnal vertical migration of zooplankton (Gorgues et al., 2019) vertical migration of zooplankton (Gorgues et al., 2019)

- Not a prognostic parameterization !
- DVM parameterization is activated by ln_dvm_m meso = .true. ٠
- Migration depth is parameterized according to Bianchi et al. (2013)

 Z_{min} = F(O2, Chl, T)

stitut de Recherche

More sophisticated PISCESv2 options : diurnal More sophisticated PISCESv2 options : diurnal vertical migration of zooplankton vertical migration of zooplankton

- A constant fraction of mesozoo is prescribed to migrate $(x$ fracmig). Microzoo is not migrating
- Organisms are assumed to be at the surface at night and at the migration depth during daytime
- Organisms are supposed to respire, excrete DOM and inorganic nutrients and egest fecal pellets in both habitats (function of daylength and temperature)

Model structure and routine names

End of part 2

