# **Biogeochemical modelling with PISCES**

#### Vincent Echevin (IRD/IPSL/LOCEAN)

#### Olivier Aumont (IRD/IPSL/LOCEAN)



Instituto francés de Investigación para el Desarrollo





#### The Pisces model

- Based on the Aumont et al. (2015) paper (no updated documentation yet)
- Coupled with NEMO ocean model and ROMS-AGRIF/CROCO model
- Not all the model is detailed, only the «most important » processes (subjective choice)
- Different versions of PISCES are available depending on the CROCO version :

PISCESv0 in old ROMS-agrif/earlier CROCO versions

PISCESv2 (in newest CROCO version)

=> detailed description of the common parameterizations of PISCESv0 and PISCESv2

+ brief overview of the new potentialities of PISCESv2

=> there may be small differences with parameterizations in Aumont et al. (2015) but the philosophy is the same



The Pisces model

Geosci. Model Dev., 8, 2465–2513, 2015 www.geosci-model-dev.net/8/2465/2015/ doi:10.5194/gmd-8-2465-2015 © Author(s) 2015. CC Attribution 3.0 License.





#### PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies

#### O. Aumont<sup>1</sup>, C. Ethé<sup>2</sup>, A. Tagliabue<sup>3</sup>, L. Bopp<sup>4</sup>, and M. Gehlen<sup>4</sup>

<sup>1</sup>Laboratoire d'Océanographie et de Climatologie: Expérimentation et Approches Numériques, IPSL, 4 Place Jussieu, 75005 Paris, France
 <sup>2</sup>Institut Pierre et Simon Laplace, 4 Place Jussieu, 75005 Paris, France
 <sup>3</sup>Dept. of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, UK
 <sup>4</sup>Laboratoire des Sciences du Climat et de l'Environment, IPSL, Orme des Merisiers, 91190 Gif-sur-Yvette, France

Correspondence to: O. Aumont (olivier.aumont@ird.fr)

Received: 11 December 2014 – Published in Geosci. Model Dev. Discuss.: 16 February 2015 Revised: 29 June 2015 – Accepted: 4 July 2015 – Published: 13 August 2015



#### Pisces model structure

Institut de Recherche pour le Développement F R A N C E Instituto francés de Investigación para el Desarrollo







# Equation for Nanophytoplankton (small phytoplankton)



# Equation for Nanophytoplankton (small phytoplankton)



### Calculation of PAR (Photosynthetically Available Radiation) to compute photosynthesis



Photosynthesis : transformation of mineral/inorganic matter

into living organic matter

Optical model required to compute the penetration of light in the water column

 $\Rightarrow$  3 wavelengths in PISCES optical model: red, green, blue

 $\Rightarrow$  PAR= PAR<sub>r</sub> +PAR<sub>g</sub> + PAR<sub>b</sub>, Qsol = solar radiation at the surface of the ocean

|                        | red                                             |                                                 |
|------------------------|-------------------------------------------------|-------------------------------------------------|
| Light                  | $PAR_{r}(z) = PAR_{r}(z - dz) e^{-k_{r}dz}$     |                                                 |
| absorption             | $PAR_{r}\left(0\right) = \frac{0.43}{3}Q_{sol}$ |                                                 |
| Absorption coefficient | $k_r = k_{r0} + \chi_{rp} Pig^{e_r} -$          | $\blacktriangleright Pig = \frac{Chl}{r_{pig}}$ |

Qsol

k<sub>i</sub>(z)

PAR

Ζ

# Equation for Nanophytoplankton (small phyto cells)

$$\frac{\partial P}{\partial t} = \underbrace{(1 - \delta^{nano})\mu^{nano}P}_{P} - m^{nano}\frac{P}{K_{nano} + P}P - w_p^{nano}P^2 - g^{micro}(P)Z - g^{micro}(P)M$$
Production
$$\mu^{nano} = \mu_P \left(1 - e^{\frac{\alpha^P(\underline{Chl}}{C})P}\underline{P_{AR}}\right) L_{lim}^{nano}$$

$$\mu_P = ab^{cT} \text{ =temperature dependent}$$



# Equation for Nanophytoplankton (small phyto cells)

$$\frac{\partial P}{\partial t} = \underbrace{\left(1 - \delta^{nano}\right)\mu^{nano}P}_{\text{Production}} - m^{nano} \frac{P}{K_{nano} + P}P - w_p^{nano}P^2 - g^{micro}(P)Z - g^{micro}(P)M$$

$$\frac{P^{\text{Production}}}{\mu^{nano}} = \frac{\mu_P \left(1 - e^{\frac{\alpha^P \left(\frac{Ohl}{C}\right)P_{PAR}}{\mu_P L_{lim}^{nano}}}\right)}_{\mu_P = ab^{cT} \text{ = temperature dependent}}$$

$$\frac{P^{\text{O4}}}{\mu_P = ab^{cT}} = \underbrace{P^{\text{O4}}}_{Fe} + Fe}_{\text{NO3}} + \underbrace{Fe}_{nano} + Fe}_{NO3} + \underbrace{K_{nan}^{nano}K_{nh4}^{nano} + K_{nh4}^{nano}NO_3 + K_{no3}^{nano}NH_4}}_{\text{NH4}} + \underbrace{L_{nh4}^{nano}}_{Rh4} + K_{nh4}^{nano}NO_3 + K_{no3}^{nano}NH_4} + \underbrace{L_{nh4}^{nano}}_{Rh4} + \underbrace{L_{nh4}^{nano}}_{Rh4} + \underbrace{L_{nano}^{nano}}_{Rh4} + \underbrace{L_{nano}^{nano}$$

# Equation for Diatoms (big phyto cells)

$$\frac{\partial D}{\partial t} = \underbrace{(1 - \delta^{diat})\mu^{diat}D}_{\text{Production}} - m^{diat}\frac{D}{K_{diat} + D}D - w_p^{diat}D^2 - g^{micro}(D)Z - g^{meso}(D)M$$

Diatoms need Silicate for their exoskeleton

Limiting nutrients : PO4, NO3, NH4, Fe, Silicate (Si)





# Equation for Diatoms (big phyto cells)

$$\frac{\partial D}{\partial t} = (1 - \delta^{diat})\mu^{diat}D - \boxed{m^{diat}\frac{D}{K_{diat} + D}D - w_p^{diat}D^2} - g^{micro}(D)Z - g^{meso}(D)M$$
Mortality
$$\frac{\nabla PO_i^{\circ}}{\nabla PO_i^{\circ}} + \frac{\nabla PO_i^{$$

Instituto francés de Investigación para el Desarrollo

# Equation for Diatoms (big phyto cells)

$$\frac{\partial D}{\partial t} = (1 - \delta^{diat})\mu^{diat}D - \boxed{m^{diat}\frac{D}{K_{diat} + D}D - w_p^{diat}D^2} - g^{micro}(D)Z - g^{meso}(D)M$$
Two terms : *«* linear *»* and quadratic mortality (= aggregation of cells)

Two terms : « linear » and quadratic mortality (= aggregation of cells)

Aggregation increases when nutrient stress increases, cells become more sticky, and merge into big sinking particles:

$$w_p^{diat} = w_p^{min} + w_p^{max} \times (1 - L_{lim}^{diat})$$



#### Equation for micro-zooplankton (small cells)



Instituto francés de Investigación para el Desarrollo

#### Equation for micro-zooplankton (small cells)



- p<sub>N</sub>=preferential grazing of zoo for species (N) over all species I (= P,D,POCs):

$$g^{micro}(N) = g^{micro} \frac{p_N^{micro} N}{K_G^{micro} + \sum_I (p_I^{micro} I)}$$

 $p_{POC} < p_{Dia} < p_{Nano} = > zoo prefers to graze nanophyto (P), then big phyto (Diatoms), then POC$ 

- grazing coefficient increases with temperature: same dependence as phytoplankton :  $b^{cT}$ 



# Equation for meso-zooplankton (big cells)



Instituto francés de Investigación para el Desarrollo

# Equation for meso-zooplankton (big cells)



- Meso zooplankton grazes on two phyto and two detritus size classes (POCs and POCb)

- p<sup>meso</sup><sub>N</sub>=preferential grazing of M for species (N) over all species I (P,D,POCs,POCb):

$$g^{meso}(N) = g^{meso} \frac{p_N^{meso}N}{K_G^{meso} + \sum_I (p_I^{meso}I)}$$

$$p_N^{meso} = \frac{\gamma_N N}{\sum_I (\gamma_I I)} = \text{not a constant (as for micro zoo)}$$

$$= \text{Meso zoo easts preferentially the most abundant previous of th$$

# Equation for dissolved organic matter (DOM) (carbon only : DOM =DOC)



(-Denit if  $O_2 low$ )



# Equation for dissolved organic matter (DOM) (carbon only : DOM =DOC)



Aggregation terms: effect of turbulence=> sh= 1/(time scale): 1s in mixed layer, 100s below mixed layer  $\Phi_{\rm e}$  = parameters for probability of encounter of particules

#### Equation for (small) particulate organic matter (POCs)





#### Equation for (small) particulate organic matter (POCs)

$$\begin{array}{l} \displaystyle \frac{\partial POC_{s}}{\partial t} &= & \sigma^{micro}(\sum_{N}g^{micro}(N))Z - g^{micro}(POC_{s})Z \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \left(m^{nano}\frac{P}{K_{nano} + P}P + w_{P}^{nano}P^{2}\right) \\ &+ & \left(1 - 0.5R_{CaCO3}\right) \\ &+ & \left(1 - 0.5R_{CCC}\right) \\ &+ &$$

 $w^{POC} = w^{POC}_{min} + (w^{POC}_{max} - w^{POC}_{min}) \max(0, \frac{z - z_{mel}}{2000m}) \qquad \text{Zmel=max(Zmxl,Ze)}$ 

WPOC

### Differences between Nitrogen and Phosphate pools (1)

$$\frac{(\frac{\partial NO_3}{\partial t} + \frac{\partial NH_4}{\partial t}) - \frac{\partial PO_4}{\partial t}}{Nitrogen Fixation} = \frac{Nfix}{A} - Denit}$$
Nitrogen Fixation  
by Trichodesnium Denitrification: when O<sub>2</sub> reduces,  
nitrate is consumed during OM  
remineralization instead of O<sub>2</sub>  
Denit =  $R_{NO3}\lambda_{DOC}^*(1 - \Delta(O_2))DOC$ 



# Oxygen equation :

$$\frac{\partial O_{2}}{\partial t} = O_{2}^{ut}(\mu_{NH_{4}}^{P}P + \mu_{NH_{4}}^{D}D) + (O_{2}^{ut} + O_{2}^{nit}))$$

$$(\mu_{NO_{3}}^{P}P + \mu_{NO_{3}}^{D}D) + O_{2}^{nit}N_{fix}$$

$$-O_{2}^{ut}\gamma^{Z}(1 - e^{Z} - \sigma^{Z})\sum_{I}g^{Z}(I)Z - O_{2}^{ut}\gamma^{M}$$

$$Respiration by zooplancton and higher trophic levels (proportional to grazing)$$

$$(1 - e^{M} - \sigma^{M})\left(\sum_{I}g^{M}(I) + \sum_{I}g_{FF}^{M}(I)\right)M - O_{2}^{ut}\gamma^{M}R_{up}^{M}$$

$$-O_{2}^{ut}Remin - O_{2}^{nit}Nitrif$$

$$Consumption of oxygen by nitrification (NH_{4}->NO_{3})$$

$$Production by photosynthesis (new prod., regenerated prod., N fixation)$$

$$Respiration by zooplancton and higher trophic levels (proportional to grazing)$$

 $O_2^{ut}$ ,  $O_2^{nit}$  = different O/C Redfield ratios for new and regenerated production

At depth (out of euphotic layer) :  $\partial_t O_2 \sim -O_2^{ut}$  Remin  $-O_2^{Nit}$  Nitrif



# Oxygen equation :

$$\frac{\partial O_2}{\partial t} = O_2^{ut}(\mu_{NH_4}^P P + \mu_{NH_4}^D D) + (O_2^{ut} + O_2^{nit})$$

$$(\mu_{NO_3}^P P + \mu_{NO_3}^D D) + O_2^{nit} N_{fix}$$

$$- O_2^{ut} \gamma^Z (1 - e^Z - \sigma^Z) \sum_I g^Z (I) Z - O_2^{ut} \gamma^M$$
Biogeochemical processes
$$(1 - e^M - \sigma^M) \left( \sum_I g^M (I) + \sum_I g^M_{FF} (I) \right) M \cdot - O_2^{ut} \text{Remin} - O_2^{nit} \text{Nitrif}$$

$$- U \cdot \partial_x O_2 - V \cdot \partial_y O_2 - W \cdot \partial_z O_2 + \partial_z (K \partial_z O_2) + \text{Diff}_h (O_2) + F_{atm}$$
Physical processes
$$3D \text{ advection} \quad \text{vertical mixing} \quad \text{horizontal air-sea mixing} \quad \text{flux}$$

...same physical terms for all of PISCES tracers



#### Many parameters in PISCES....

| Parameter                            | Units                              | Value         | Description                                            |                                                  |                           |                                  |                       |                          |          |                       |                                         |         |
|--------------------------------------|------------------------------------|---------------|--------------------------------------------------------|--------------------------------------------------|---------------------------|----------------------------------|-----------------------|--------------------------|----------|-----------------------|-----------------------------------------|---------|
|                                      |                                    |               |                                                        | Parameter                                        | Units                     | V                                | /alue                 | Description              |          |                       |                                         |         |
| $\mu_{\rm max}^{\rm o}$              | $d^{-1}$                           | 0.6           | Growth rate at 0 °C                                    | $b_Z$                                            | -                         | 1                                | .079; 1.079           | Temperature s            | ensitivi | ity term              |                                         |         |
| $\mu_{ref}$                          | d <sup>-1</sup>                    | 1.0           | Browth fate reference for light limitation             | $e_{\max}^{I}$                                   | -                         | 0                                | 3; 0.35               | Maximum gro              | wth eff  | ficiency of zoo       | plankton                                |         |
| bresp<br>b p                         | u<br>_                             | 1.066         | Temperature sensitivity of growth                      | vI                                               | _                         | 0                                | 6:0.6                 | Excretion as DOM         |          |                       |                                         |         |
| aI                                   | $(Wm^{-2})^{-1}d^{-1}$             | 2.2           | Initial slope of $P = I$ curve                         | gm                                               | $d^{-1}$                  | 3                                | ;0.75                 | Maximum gra              | zing ra  | te                    |                                         |         |
| $\delta^{I}$                         | (wm) u                             | 0.05:0.05     | Exudation of DOC                                       | $g_{FF}^M$                                       | (mmolL <sup>-1</sup>      | ) <sup>-1</sup> 2                | $\times 10^3$         | Flux feeding             | ate      |                       |                                         |         |
| BI                                   | _                                  | 2.1:1.6       | Absorption in the blue part of light                   | $K_{\mathcal{G}}^{I}$                            | $\mu$ molCL <sup>-1</sup> | 2                                | 0;20                  | Half-saturatio           | n const  | ant for grazing       | 3                                       |         |
| BI                                   | _                                  | 0.42:0.69     | Absorption in the green part of light                  | P'P                                              | -                         | 1                                | ;0.3                  | Preference for           | nanop    | hytoplankton          |                                         |         |
| B1                                   | _                                  | 0.4:0.7       | Absorption in the red part of light                    | <sup>P</sup> D<br>n                              | _                         | 0                                | 103                   | Preference for           | POC      | 115                   |                                         |         |
| $K^{I,\min}$                         | nmol PL -1                         | 08.24         | Minimum half-saturation constant for phosphate         | $p_{Z}^{PPOC}$                                   | _                         | 1                                | .0                    | Preference for           | microz   | zooplankton           |                                         |         |
| K <sup>I</sup> ,min                  | $umol NL^{-1}$                     | 0.013:0.039   | Minimum half-saturation constant for phosphate         | Fthresh                                          | µmolCL <sup>-1</sup>      | 0                                | .3; 0.3               | Food threshol            | d for zo | ooplankton            |                                         |         |
| KNO                                  | $\mu$ mol N L <sup>-1</sup>        | 0.13; 0.39    | Minimum half-saturation constant for nitrate           | $J_{\text{thres}}^{L}$<br>$J_{\text{thres}}^{M}$ | µmolCL <sup>-</sup>       | 0                                | .001                  | Specific food            | thresho  | lds for microz        | ooplankton                              |         |
| $K_{si}^{D,min}$                     | µmol SiL <sup>-1</sup>             | 1             | Minimum half-saturation constant for silicate          | m                                                | (µmol CL                  | Paramete                         | er Units              |                          | N        | Value                 | Description                             |         |
| KSi                                  | µmol SiL <sup>-1</sup>             | 16.6          | Parameter for the half-saturation constant             | r'<br>K                                          | d <sup>-1</sup>           | $\lambda_{POC}$                  | $d^{-1}$              |                          | 0        | ).025                 | Degradation rate of POC                 |         |
| $K_{S_i}^I$                          | µmol SiL <sup>-1</sup>             | 2;20          | Parameters for Si / C                                  | $v^{I}$                                          |                           | w <sub>POC</sub>                 | $m  d^{-1}$           |                          | 2        | 2                     | Sinking speed of POC                    |         |
| $K_{F_{2}}^{I,\min}$                 | nmol Fe L <sup>-1</sup>            | 1:3           | Minimum half-saturation constant for iron uptake       | $\theta^{\text{Fe},\text{Zoo}}$                  | µmolFe n                  | wmin                             | $m d^{-1}$            |                          | 3        | 30                    | Minimum sinking speed of GOCh           |         |
| $S_{rat}^{f^{e}}$                    | _                                  | 3;3           | Size ratio of Phytoplankton                            |                                                  |                           | wdust                            | $m s^{-1}$            |                          | 2        | 2                     | Sinking speed of dust                   |         |
| $\theta_{m}^{Si,D}$                  | mol Si (mol C) <sup>-1</sup>       | 0.159         | Optimal Si / C uptake ratio of diatoms                 |                                                  |                           | a <sub>6</sub>                   | (µmol                 | $CL^{-1})^{-1}d^{-1}$    | -1 2     | 25.9                  | Aggregation rate (turbulence) of PC     | C→GOC   |
| here, I                              | $\mu$ mol Fe (mol C) <sup>-1</sup> | 7:7           | Optimal iron quota                                     |                                                  |                           | a7                               | (µmol                 | $CL^{-1})^{-1}d^{-1}$    | -1 4     | 1452                  | Aggregation rate (turbulence) of PC     | C→GOC   |
| $\theta^{\text{Fe},I}$               | $\mu$ mol Fe (mol C) <sup>-1</sup> | 40.40         | Maximum iron quota                                     |                                                  |                           | as                               | (µmol                 | $CL^{-1})^{-1}d^{-1}$    | -1 3     | 3.3                   | Aggregation rate (settling) of POC-     | →GOC    |
| max<br>mI                            | d <sup>-1</sup>                    | 0.01.0.01     | phytoplankton mortality rate                           |                                                  |                           | ag                               | (µmol                 | $CL^{-1})^{-1}d^{-1}$    | -1 4     | 47.1                  | Aggregation rate (settling) of POC-     | →GOC    |
| m <sup>P</sup>                       | $d^{-1} \mod C^{-1}$               | 0.01          | Minimum quadratic mortality of phytoplankton           |                                                  |                           | $\lambda_{E_2}^{min}$            | $d^{-1}$              |                          | 3        | $3 \times 10^{-5}$    | Minimum scavenging rate of iron         |         |
| $w^D$                                | $d^{-1} \operatorname{mol} C^{-1}$ | 0.03          | Maximum quadratic mortality of diatoms                 |                                                  |                           | λ <sub>Fe</sub>                  | $d^{-1}\mu$           | nol <sup>-1</sup> L      | 0        | 0.005                 | Slope of the scavenging rate of iron    | xlam1   |
| $\theta_{\text{Chl},I}^{\text{max}}$ | $m_{g}Chl(m_{g}C)^{-1}$            | 0.033.0.05    | Maximum Chl / C ratios of phytoplankton                |                                                  |                           | λdust                            | $d^{-1}m$             | $g^{-1}L$                | 1        | 150                   | Scavenging rate of iron by dust         |         |
| $\theta$ Chl                         | $mgChl(mgC)^{-1}$                  | 0.0033        | Minimum Chl / C ratios of phytoplankton                |                                                  |                           | λCaCOa                           | $d^{-1}$              | 0                        | 0        | ).197                 | Dissolution rate of calcite             |         |
| <sup>o</sup> min<br>Imax             | $\mu$ mol CL <sup>-1</sup>         | 1:1           | Threshold concentration for size dependency            |                                                  |                           | nca                              | -                     |                          | 1        | l                     | Exponent in the dissolution rate of o   | calcite |
| - max                                | µ                                  | -,-           | The should concentration for one acpendency            |                                                  |                           | Xlab                             | _                     |                          | 0        | ).5                   | Proportion of the most labile phase     | in PSi  |
|                                      |                                    |               |                                                        |                                                  |                           | λ slow                           | $d^{-1}$              |                          | 0        | ).003                 | Slow dissolution rate of BSi            |         |
|                                      |                                    |               |                                                        |                                                  |                           | λfast                            | $d^{-1}$              |                          | 0        | 0.025                 | Fast dissolution rate of BSi            |         |
|                                      |                                    |               |                                                        |                                                  |                           | 131                              |                       |                          |          |                       |                                         |         |
|                                      |                                    |               |                                                        |                                                  |                           | Parameter                        | Units                 | V                        | alue     | Descripti             | on                                      |         |
| Parameter                            | Units                              | Value         | Description                                            |                                                  |                           | $\lambda_{NH_4}$                 | $d^{-1}$              | 0.                       | 05       | Maximur               | n nitrification rate                    |         |
|                                      |                                    |               | 1                                                      |                                                  |                           | O2min,1                          | µmol O <sub>2</sub> I | 2-1 1                    |          | Half-satu             | ration constant for denitrification     |         |
| $\lambda_{DOC}$                      | d <sup>-1</sup>                    | 0.3           | Remineralization rate of DOC                           |                                                  |                           | O2 <sup>min,2</sup>              | µmol O <sub>2</sub> I | 2-1 6                    |          | Half-satu             | ration constant for denitrification     |         |
| KDOC                                 | $\mu$ mol CL <sup>-1</sup>         | 417           | Half-saturation constant for DOC remin.                |                                                  |                           | L <sub>T</sub><br>M <sup>m</sup> | nmol NI               | -1d-1 = 0                | 012      | Total con<br>Maximur  | centration of iron ligands              |         |
| KBact                                | $\mu$ mol N L <sup>-1</sup>        | 0.03          | NO3 half-saturation constant for DOC remin             |                                                  |                           | KDz                              | nmol Fe I             | -1 0.                    | 1        | Fe half-s             | aturation constant of nitrogen fixation |         |
| KBact                                | $\mu$ mol N L <sup>-1</sup>        | 0.003         | NH4 half-saturation constant for DOC remin             |                                                  |                           | E <sub>fix</sub>                 | $Wm^{-2}$             | . 50                     | )        | Photosyn              | thetic parameter of nitrogen fixation   |         |
| KBact                                | $\mu mol PL^{-1}$                  | 0.003         | PO4 half-saturation constant for DOC remin             |                                                  |                           | Feice                            | nmol Fe L             | -1 1:                    | 5        | iron conc             | entration in sea ice                    |         |
| K <sub>Ea</sub>                      | nmol Fe L <sup>-1</sup>            | 0.01          | Fe half-saturation constant for DOC remin.             |                                                  |                           | Fe,min<br>SolEs                  | µmol Fe n<br>–        | 1 ~ d ~ 1 2<br>0.        | 02       | Maximur<br>Solubility | n sediment flux of Fe                   |         |
| a1                                   | $(\mu mol CL^{-1})^{-1}$           | $d^{-1}$ 0.37 | Aggregation rate (turbulence) of $DOC \rightarrow POC$ | 2                                                |                           | O <sub>2</sub> <sup>ut</sup>     | mol O <sub>2</sub> (n | nol C) <sup>-1</sup> 13  | 3/122    | O/C for               | ammonium-based processes                |         |
| <i>a</i> 2                           | $(umol CL^{-1})^{-1}$              | $d^{-1}$ 102  | Aggregation rate (turbulence) of $DOC \rightarrow POC$ | ~                                                |                           | O2nit                            | mol O <sub>2</sub> (n | $(100  {\rm C})^{-1}$ 32 | 2/122    | O / C rati            | o of nitrification                      |         |
|                                      | (umol CI =1)=1                     | d=1 2520      | Aggregation rate (turbulence) of DOC > CO              | c                                                |                           | $r_{NH_4}^{\star}$               | mol N (m              | olC) <sup>-1</sup> 3/    | 5        | C/N ratio             | o of ammonification                     |         |
| uz                                   | (uniorCL ·) ·                      | u 5550        | Aggregation rate (turbulence) of $DOC \rightarrow GO$  | C                                                |                           | r*                               | mol N (m              | olC) <sup>-1</sup> 10    | )5/16    | C/N ratio             | of denitrification                      |         |

|                                                        | Aum                                    | ont et a                                     | I., 20           | )15     |
|--------------------------------------------------------|----------------------------------------|----------------------------------------------|------------------|---------|
| Aggregation rate (Brownian) of DOC $\rightarrow$ POC   | r <sub>CaCO3</sub>                     | -                                            | 0.3              | Rain-ra |
| Aggregation rate (Brownian) of $DOC \rightarrow POC$   | $r_{NO_3}^{\star}$<br>$_{	heta^{N,C}}$ | $mol N (mol C)^{-1}$<br>$mol N (mol C)^{-1}$ | 105/16<br>16/122 | C/N ra  |
| Aggregation rate (furbulence) of $DOC \rightarrow GOC$ | 14114                                  |                                              |                  |         |

16/122 N / C Redfield ratio

Rain-ratio parameter

Institut de Recherche

pour le Développement RANCE

Instituto francés de Investigación para el Desarrollo

 $(\mu mol CL^{-1})^{-1}d^{-1}$ 

 $(\mu mol CL^{-1})^{-1}d^{-1}$ 

 $a_4$ 

 $a_5$ 

5095

114

#### More sophisticated PISCESv2 options : PISCES-quota

PISCES-QUOTA (39/40 tracers) 24/25 in PISCES std



### More sophisticated PISCESv2 options : Ligands for Fe

![](_page_28_Figure_1.jpeg)

- Dissolved Fe assimilated by phyto mostly in its complexed for with ligands (L)

- ligand concentration is constant in previous version v0,v1

=> prognostic equation for1 ligand concentration in v2 if chosen (other version with more L)

# More sophisticated PISCESv2 options : sediment module

![](_page_29_Figure_1.jpeg)

 In the default configuration, exchanges with the sediments are modeled based on a simple metamodel proposed by Middelburg et al. (1996):

$$F_{sed} = F(NO_3, O_2, Z, ...)$$

New process model : new chemical species : Sulfate, FeS,... dissolved and precipitate

=> long integration time (~100s of years) to reach equilibirum
 => very new in CROCO (not yet used), soon in West Africa (Senegal) (P.-A. Auger, IRD/LOPS)

# More sophisticated PISCESv2 options : diurnal vertical migration of zooplankton (Gorgues et al., 2019)

- Not a prognostic parameterization !
- DVM parameterization is activated by ln\_dvm\_meso = .true.
- Migration depth is parameterized according to Bianchi et al. (2013)

 $Z_{mig} = F(O2, Chl, T)$ 

![](_page_30_Figure_5.jpeg)

stitut de Recherche

# More sophisticated PISCESv2 options : diurnal vertical migration of zooplankton

- A constant fraction of mesozoo is prescribed to migrate (xfracmig). Microzoo is not migrating
- Organisms are assumed to be at the surface at night and at the migration depth during daytime
- Organisms are supposed to respire, excrete DOM and inorganic nutrients and egest fecal pellets in both habitats (function of daylength and temperature)

![](_page_31_Picture_4.jpeg)

![](_page_31_Picture_5.jpeg)

#### Model structure and routine names

![](_page_32_Figure_1.jpeg)

Instituto francés de Investigación para el Desarrollo

#### End of part 2

![](_page_33_Picture_1.jpeg)