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Waves and sea states generalifies
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Waves and sea states generalifies

We think of waves as the large crests that we see at the sea surface...
But there are also short « wavelets » riding on the largest waves.

This collection of waves (long, short, tall, small...) is the « sea state »




Waves and sea states generalifies

Waves are characterized by the distance between 2 crests: the wavelength
And by the time between 2 crests passing a fixed point: the wave period
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Waves and sea states generalifies

Examples of power spectra of the surface elevation

the usual « wave band »
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Waves and sea states generalities
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Waves and sea states generalifies

Wave climate
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Modeling waves

Wave modeling with spectral models (such as WAVEWATCH lIll)

time : 2010-02-03 08:00
lon :-146.68
lat : -15.24 31.5

-> Solve the equation of evolution of the wave spectrum
DN(k,6) S

Dt o

Spectral space
Physical space

The prognostic variable is the
spectral wave energy density
as a function of spatial and
spectral coordinates and of

time. < ST




Modeling waves

Wave modeling with spectral models (such as WAVEWATCH lIll)

-> Solve the equation of evolution of the wave spectrum
DN(k,0) S

Dt o

where N(k, 8) is the wave density (or action) spectrum

And o is the intfrinsic frequency (i.e. observed in a frame of
reference moving with the mean current)

Energy or Action? Actionis a more general invariant than wave
energy (e.g.in wave-current interactions there is exchange of
energy with the current). The relation between action and energy
spectrais given by:

2w N(k,0)
C, o

_27r

Cy

F(f,0) F(k,0) =



Modeling waves

Wave modeling with spectral models (such as WAVEWATCH lIll)

-> Solve the equation of evolution of the wave spectrum
DN ( k- 9)

odvechon/equohon\ source terms
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Modeling waves

Wave modeling with spectral models (such as WAVEWATCH lIll)

-> Source terms represent many different effects:

Generation by the wind
Non-linear evolution

Dissipation due to breaking
Dissipation due to bottom friction
Scattering and reflection...

S — Sln + Sin + Snl + Sds + Sbot + Sdb + Str + Ssc + Sice + Sref + Sa::c

SIn = linear input term for model inifialization fo provide more realistic wave growth
Sin = atmosphere-wave interactions (usually positive but can also be negative in the case of swell
Snl = wave-wave inferactions

Sds =wave-ocean interaction term that generally contains the dissipation

Sbot =wave-bottom interactions (shallow waters)

Sdb =depth-induced breaking (very shallow waters)

Str = friad wave-wave interactions

Ssc = scafttering of waves by bottom features

Sice = wave-ice interactions

Sref = reflection off shorelines or floating objects such asicebergs

Sxx = eventual user-defined source term



Modeling waves

Wave modeling with speciral models (such as WAVEWATCH Ill)
-> The accuracy of wave models is a function of:

- forcing parameters (winds, currents, boftom, seaice ...)
-> Wind errors are among the main sources of wave errors

-> Currents are important too and can create large differences. They can have
effects on very small scale: wave height gradients are probably dominated by currents

« choice of parametrizations
-> Source term parameterization tuning is complex

-  model numerics

->wave model validation mainly with hs from altimetry (and in situ buoys)

when going from Hs to E(f) to full spectrum to source terms ... we are talking about
aspects of the wave model that are less and less validated...



Modeling waves

Wave modeling with spectral models (such as WAVEWATCH lIll)
-> Qutputs of wave models

*  Full spectra
- 1D spectral data : E(f)
*  « bulk » parameters (scalar / vector): derived
- from the spectrum (e.g. Hs, Tm0,-1 ... )
- from the source terms (e.g. tauw, phioc ... )



WAVEWATCH Il in practice

WAVEWATCH Il (and most spectral models) do not solve the full density
spectral evolution equation in once, but splitit intfo 3 parts:

ON

B + advection = 0
ON

B + refraction = 0
ON

o - e

Because the time scales (generation vs propagation are very different)
= Different time steps for the different parts

DTG = global time step (each step is integrated over DTG)

DTX = time step used for advection, constrained by stability (CFL)
DTR = time step used for refraction and k-advection

DTS = time step used for source terms



WAVEWATCH Il in practice

Practical rules for choosing time steps:

DTG: accuracy requires relatively small factor between DTX and DTG (say
2~3) as we do not want to propagate information over barely resolved
bathymetry in overall time step

DTX: CFL criterion : information cannot jump stably over more than one grid
box in one time step => DTX = 0.8 x dx/(g/fmin4pi) with fmin=0.0373 => 3-4 %
of dx

DTR: refraction includes great-circle direction change, depth and current
refraction, and current induced wavenumber shifts, refraction is filtered
(limited) for stability, and reducing the refraction time step will reduce the
use of filter. Generally kept large but best set at /2 DTG => need to check
that lower DTR has no impact on the solution.

DTS: actually represents the minimum used DT, smaller minimum DT results in
smoother and faster model. Generally used: 1- 10s



WAVEWATCH Il in practice

WAVEWATCH lll includes many options for numerics and parameterizations

-> The general options are chosen prior to compilation by setting the
“switch’ file (similarly to cppdefs in CROCO). It includes the choice of:

- The propagation scheme (PRO-PR3 / UQ, UNO)

«  The generation and dissipation parameterizations (ST1-STé)

«  The wave-wave interactions (NLO-NL3)

« The bottom friction (BTO-BT4)

* Theseaice tfreatment (ICO-IC3/ 1SO - 1S2)

« The shoreline reflection (REFO-T)

« The interpolation method of the forcing fields (WNTO0-2, WNXO-2)
« The use of coupling (COU/ OASIS / OASOCM, OASACM)

* The use of netcdf4 library (NC4)

«  The use of parallelization or not (SHRD or DIST, MPI)

FO0 NOGRB NOPA NC4 TRKNC DIST MPI PR3 UQ FLX0 LN1 ST4 STABO NL1 BT4 DB1 MLIM TRO BSO ICO IS@

REF1 XX@ WNT@ WNX1 RWND CRT@ CRX1 COU OASIS OASOCM 00 01 02 02a 02b 02c 03 04 05 06 07



WAVEWATCH Il in practice

WAVEWATCH lll includes many options for numerics and parameterizations

-> Then parameter adjustment is made through namelists when defining
the model configuration in ww3_grid.inp

&MISC CICEQ = 0.25, CICEN = 0.75, FLAGTR = 4 /
&FLX3 CDMAX = 2.5E-3 , CTYPE = 0 /
&PRO3 WDTHCG = 4.00, WDTHTH = 4.00 /

&SIN4 BETAMAX = 1.33 /
&SDS4 WHITECAPWIDTH = 0.3 /

Here are a few referencesfor numerics and parameterizations (other can
be found in WW3 manual):

Tolman 2002, Ardhuin et al. 2010, Filipotet al. 2012, Babnin et al., Janssen et
al. 1991 and updates, Hasselmann 1985, Battjes and Janssen 1978...



WAVEWATCH Il in practice

WAVEWATCH Il grids
WAVEWATCH Il has multiple grid options

Structured grids:
- rectangular grids: RECT
« curvilinear grids: CURV

0° 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E 180° 160°W 140°W 120°W 100°W 80°W 60°W 40°W 20°W

Multigrid option (for nesting higher resolution structured grids)

Unstructured grids: UNST




WAVEWATCH Il in practice

WAVEWATCH Il grids

WAVEWATCH lll requires 3 grid definitions to run (1 necessary and two
optional):

«  bathymetry (necessary)

* land —sea mask (optional in some version, needed in multi-grid version of
WWIII)

« obstructions (optional):to account for energy decay due to sub-grid
blocking (e.g. unresolved islands...)

Two types of reference data are usually used to build the grids:
« global highresolution bathymetry dataset (e.g. ETOPQO)
« global shoreline database in the form of polygons (e.g. GSHHS)

= Algorithms are designed to meld the high resolution bathymetry with the
shoreline database to develop the optimum grids within the GRIDGEN
pre-processing framework



WAVEWATCH Il in practice

WAVEWATCH lll forcing
(water level, atmosphere, currents, ice, boundaries)

Atmosphere/currents/water level/ice forcings:

« not mandatory (but no atmospheric forcing means no wave generation and
only propagation from the boundaries),

* can be set as constant,

* can be prescribed from external file or model (in the case of coupling)
(activation through flags in ww3_shel.inp)

Boundaries:

- WWIIl can run with closed or open boundaries,

«  Boundary data are therefore mandatory only for open boundary case,
- They are prescribed from wave spectra

(activation with dedicated values (2) in the mask grid)

Initialization:

*  May be set up from calm conditions

- Orfrom a prescribed idealized spectrum

(using ww3_sfrt.inp)



WAVEWATCH Il in practice

Bath., obst.,

masks, model WAVEWATCH Il workflow

settings

ww3_grid.inp pmemd  ww3_grid mod_def.ww3

mod_def.ww3

ww3_strt.inp restart. ww3

ww3_shel.inp mod_def.ww3

restartNNN.ww3
nestNNN.ww3
+ some utilities to prepare forcing files -
(W3_prnc), boundary files (w3_bounc),
and fransform output files to netcdf _
or ascii files (w3_ounf, w3_outp,

w3_ounp...)




Coupling WAVEWATCH Il with CROCO

Exchanged fields

ATM

Currents, water level

OCEAN g WAVES

‘ Significant wave height, mean period,
mean direction, momentum fluxes
(stokes transport, brenouilli head pressure ...)




Coupling WAVEWATCH Il with CROCO

In practice

= Activate switches associated to coupling for coupled compilation

COUOASIS OASOCM i NB! MPI DIST switches are
=> ocean-wave coupling also mandatory, as OASIS
COU OASIS OASACM => afmosphere-wave Coupling  ese Pl commmications

= In wwd3_shel.inp: activate coupled flags to forcing fields:

CF Water levels
CF Currents
CF Winds

And define the coupling time step and the coupled fields in:

S Type 7 : Coupled fields— > NB! The coupling time step must
20090101 000000 20090201 000000 equal the global time step (DTG,
N defined in ww3_grid.inp)

TOM1 OHS DIRTAW TWO ACHA
SSH CURWND



Coupling WAVEWATCH Il with CROCO

In practice

= OASIS namcouple has to be set-up according to chosen fields to be
coupled in WAVEWATCH Il and CROCO

= w3_grid has to be launched sequentially prior to launching the
coupled run

= w3_shel (renamed wwatch for the coupler) has to be launched
together with croco executable through MPI command



Coupling WAVEWATCH Il with CROCO

Exchanged fields

ATM

Currents, water level

OCEAN g WAVES

‘ Significant wave height, mean period,
mean direction, momentum fluxes
(stokes transport, brenouilli head pressure ...)




Coupling WAVEWATCH Il with CROCO

Coupling: why?

«  Waves are influenced by winds

«  Waves are influencedby currents, water levels, bottom roughness
- Waves are influencedby seaice

Feedbacks:

« the surface roughness (waves) modifies the wind stress

- Waves generate currents and modify water levels and bottom
roughness

« Waves enhance the upper ocean mixing
« Waves break up the ice and push it around

« And such feedbacks have influence on waves
— Needto couple



Coupling WAVEWATCH Il with CROCO

Coupling: why?
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Coupling WAVEWATCH Il with CROCO

Coupling: When does it matter?

-> Coupled feedbacks through the
wind stress

drag coefficientis dependent on the
sea state, dependent on wave age

= So basically it always matters
= Notably when mixed seas

= Lofs of remaining uncertainties for
high wind speeds, but certainly
important for exireme events

— Coastal storm surge modelling

Drag Coefficient, Cd (x10%)

®  Neumann 194873
e Francis 1951 (73,98

O Sheppard 1958 (73,90)

©  Wilson 1960 (51,73

4 Deacon & Webb 1962 (73,91]

X Wu197(73)

X Smith & Banke 1975 [79]

®  Garratt1977(50)

" Smith 1980(32)

+  Anderson 1992 (92]

» ~— Powell 2006 [37] for Left Front Sector (20-160m)
A« Powell 2006 [37] for Right Sector (20-160m)

® — Powell 2006 [37] for Rear Sector (20-160m)

4 Moon et al. 2006 (104]

O Jarosz et al. 2007 [26)

*  Zijemaetal 2012(113)

©  Holthuijsen et al. 201
4 Holthuijsen et al. 2012 (Cross Swell) [103]

== Edson et al. 2013 [129)

Wu 1980 (74), 1982 (81)

Large & Pond 1981 (3]
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~ Peng & Li 2015(133)

Cd

20 30 40 50 60
Wind Speed, Uy, (m/s) From Bryant and Akbar (2016)
0.007
0.006 4
0.005 A -
o2
0.004 4 .._-:-.Q'QI._ | ppo.
30-gerlets’
0.003 RO
=20 °
0.002 &
e 5-10 e 2-25 e 30-35
0.001 A o..‘ e 10-15 ® 25-30 all data
® 15-20
(l.()()() L) T T T T
0 10 20 30 40 50 60

Uyo (m/s)




Coupling WAVEWATCH Il with CROCO

Coupling: When does it matter?

Total wind stress t rhoa*ust”2

-S> FIU Xxes com pu.l-aﬁo n wind stress f(()(liirrgcete)m flow t2-¢i0 wind stress for waves (wind input): ‘taw’

wave to mean flow stress (wave dissipation): ‘two'

Wave-atmosphere
Wave-ocean

net stress to waves @ 'taw' - 'two'
(wave gro\\'lhx‘dccuy)

Wave-ice

bottom boundary layer stress: 'tbb’ z=-<h>+ §|

Wayve boundary layer — — — — ™ ™ »_ O z=-<h>

Tatm (1)=(2)+(3)+(4)

Atm. stress at sea surface
Wind stressonice

L@ —> 1® U= Taw (4)
Visc. stress on ocean e Atm. stress on waves
Wave stresson ice (5) T, i=Tice ,t{ =1 (7)
— Ice-ocean momentum

Wave stresson ocean (6) Tds = Tw-o exchange



Coupling WAVEWATCH Il with CROCO

. ° a
Coupling: When does it matter? (6)0°N 0.02
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Coupling WAVEWATCH Il with CROCO

Coupling: When does it matter?

-> Over strong ocean current gradients

H.m|
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Coupling WAVEWATCH Il with CROCO

Coupling: When does it matter?

-> Nearshore-dynamics:
Predominance of wave-induced circulation in littoral regions

Evolvingwater level
Impact of current on waves evolution

’

|
Wave-induced circulation (stokes drift |
|

and fransport, acceleration by breaking)
Enhanced mixing due to wave breaking L/\/\/\/t«b__
/

Surface and bottom streaming O
)

(wave-induced thin viscous boundary layer) = . ’

———-]—
=

Mass flux due to wave rollers

Wave-induced pressure effects
Wave-induced additional diffusivity
Wave-induced setup



A few links/references

Online documentation:

hitp://www.croco-ocean.org/documentation/

https://croco-
ocean.giflabpages.inria.fr/croco doc/tutos/tutos.1é6.coupling.html

A few papers:

Ardhuin et al. 2010, 2017, ... and many others
Marchesiello et al. 2015

Pianezze et al. 2018

Couvelard ef al. 2020

Masson et al. 2022 (in prep)



