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FOREWORDS: INTERESTS AND QUESTIONS

Many coupling processes coexist over a large spectrum of
temporal and spatial scales at the air–sea interface. Both
one- and two-way interactions between the are key features
in driving circulation in both fluids.
Air-sea interactions at mesoscales
Main processes which control the local heat and
momentum fluxes at the interface and their consequences.

- Local and Remote effect
(i) How the atmosphere control UPPER-OCEAN variability
and thermodynamics properties.
(ii) How ocean temporal and spatial scales induces
LOWER-ATMOSPHERE thermodynamics properties.

- Upscalling effect (reverse cascade of energy)
(iii) Impact of small-scale processes on larger scale variability
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AIR-SEA INTERACTIONS
Normal conditions
Processes of the upper-ocean and lower-atmosphere.
Dynamical unbalanced at the interface, both fluids
affect the other-one.
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AIR-SEA INTERACTIONS Extreme events Fluxes change of an order of magnitude

- Mixed Layer  
Depth

TC track 

Cold wake
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Basin Scales

Atmosphere ⇒ Wind and heat fluxes ⇒ Ocean
Stronger wind speed ⇒ lower Sea Surface Temperature
(SST) via mixing and turbulent heat fluxes. NEGATIVE
CORRELATION between SST and surface wind speed
Atmosphere drives Ocean

Mesoscale Scales

Atmosphere ⇐ SST fronts ⇐ Ocean
Ocean fronts ⇒ enhanced (reduced) wind speed over warmer
(colder) SST. POSITIVE CORRELATION between SST and
surface wind speed. FEEDBACK LOOP

Ocean drives Atmosphere

* From Pasquero et al. [2020]

Thermal Feedback
Different behavior at different scales
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Donward Momentum Mixing - DMM

Involves the large eddies with the MABL, acting
on the turbulent fluctuations of momemtum from
the top of the MABL towards the surface
∇ · u⃗ = αDM∇SST

Pressure Adjustment - PA

A seconduary circulation is forced by the
divergence of the air-temperature gradient, itself
driven by Sea Surface Temperature (SST)
∇ · u⃗ = αPA∇2SST

*Image Courtesy:
A.N. Meroni [2021]

Thermal Feedback
Two main mechanisms: DMM and PA
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Thermal Feedback
Downward Momentum Mixing: modifies
MABL stability and consequently its

thermodynamical properties.
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Eddies and fronts alter the stability of the Marine Atmospheric Boundary Layer (MABL).
Involves the large eddies with the MABL, acting on the turbulent fluctuations of momemtum from the
top of the MABL towards the surface
∇ · u⃗ = αDM∇SST (at mesoscale)

Decoupled 
and
Stable 
bonduary
layer

Unstable 
MABL
and 
increased
mixing

WARMCOLD

MABL Radiosonde observations in the Eastern Pacific

Hashizume et al. [2012]

** Adapted from Hyodae Seo [2014]

Thermal Feedback
Downward Momentum Mechanism: Local and Rapid effects
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Downward Mixing Mechanism
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*From Desbiolles et al. [in prep.]

=⇒ DM mechism: as a first guess, linear
relationship (significant correlation) between
Along-wind SST gradients and wind
divergence structures.

=⇒ This is true for daily to monthly values
(cf. Chelton et al. [2007,2010], Small et al.
[2008] and ref. within)

=⇒ The slope of this relationship is the
coupling coefficient.

Environmental condition DMM depends
upon ??

Thermal Feedback
Downward Momentum Mechanism: Local and Rapid effect
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Downward Momentum Mixing
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*From Desbiolles et al. [in prep.]

=⇒ DM mechism: as a first guess, linear
relationship (significant correlation) between
Along-wind SST gradients and wind
divergence structures.

=⇒ This is true for daily to monthly values
(cf. Chelton et al. [2007,2010], Small et al.
[2008] and ref. within)

=⇒ The slope of this relationship is the
coupling coefficient.
s

Environmental conditions DMM depend
upon ??

Thermal Feedback
Downward Momentum Mechanism: Local and Rapid effect
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25 yrs of ERA5 Reanalysis, 00UTC, daily frequency
Temporal correlation between Downwind SST 

Gradients and Wind Divergence

10 m Wind Divergence

=⇒ DM mechism is the leading
process which shapes the surface
wind divergence over the
Mediterranean at daily time scale

=⇒ Significant correlation between
wind divergence and SST gradients
up to 925 hPa, which corresponds to
the top of the boundary layer.

Agreement with the theory

=⇒ DM mechanism modifies wind
variability throughout the whole
MABL

* From Desbiolles et al. [2021]

Thermal Feedback
Downward Momentum Mechanism: MABL responses

13/39 Fabien Desbiolles Ocean-Atmosphere coupling at Mesoscales



Cloud Cover (integrated over the MABL) and Rain responses to SST gradients:

Winds is blowing from warm to cold patches =⇒ ∇SST · k̂ < 0

cold-to-warm =⇒ ∇SST · k̂ > 0
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Thermal Feedback
Downward Momentum Mechanism: Cloud and Rain responses
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Thermal Feedback
Pressure Adjustment: Secondary

circulation driven by SLP anomalies
(themselves forced by the local SST)
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A seconduary circulation is forced by the divergence of the air-temperature gradient, itself driven by
Sea Surface Temperature (SST) and the resulting sensible heat flux.
∇ · u⃗ = αPA∇2SST (at mesoscale)

Latitude-pressure section of temperature and cloud water content,
together with the zonally-averaged meridional circulation anomalies
simulated in a regional atmospheric model near Hawaii. *From Xie et al. [2004.]

Thermal Feedback
Pressure Adjustment Mechanism
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PA is detectable on long time scale over
the Western Bonduary Currents:

Multi-annual averages of QuickSCAT wind
observations and ECMWF model data.
Takatama et al. [2015] theoretically show
thatPA controls the wind divergence response
toSST structures in long-term
verticallyintegrated MABL dynamics.

Thermal Feedback
Pressure Adjustment Mechanism: Temporal scales
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PA is also acting on shorter time-scale

(i) Convective events: Li and Carbone [2012]
find that the probability of convective events
triggered over warm SST patches is much
higher than those over cool ones.

Warm patches

Cold 
patches

(ii) Over a cold wake of a tropical cyclone:
Ma et al. [2020] show that the cold wakes of
tropical cyclones reduce cloud cover and rainfall
by setting a secondary circulation.

Thermal Feedback
Pressure Adjustment Mechanism: Temporal scales
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Thermal Feedback
Implications for Atmospheric Dynamics
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Remote and Uscaling effect: Example of the Southern Africa
summer climate

Ocean Mesoscale Activity (e.g., ABFZ, Great Agulhas),
Incoming moisture fluxes, Low-pressure system which leads
to Cloud band and Rainfall

* From Desbiolles et al. [2018,2020]

Thermal Feedback
Implication for Atmosphere Dynamics
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Representation of Angola-Low (AL):
AL is shallower with
a Northewest shift
of the center

Underlying mechanism: Mesoscale activity increase the
near-surface baroclinicity of the atmosphere and
significatively impact the basin-scale circulation:
: increase of the incoming Moisture fluxes and
consequently the tropical-low activity

* From Desbiolles et al. [2018,2020]

Thermal Feedback
Implication for Atmosphere Dynamics
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Mesoscale Ocean

: possible shift in the
ITCZ in the Indian
OCean
: More Tropical
Temperate Troughs
(TTTs)
: shitfted in the Cloud
bands inclination
: More intense
Tropical-Low events

* From Desbiolles et al. [2018,2020]

Thermal Feedback
Implication for Atmosphere Dynamics
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Thermal Feedback
Implications for Ocean Dynamics
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A partial Control of the Kuroshio by Alteration of
Heat Fluxes

Ma et al. [2006]: By altering the heat fluxes and then the
baroclinic instability, mesoscale TFB can induce in some
regions a damping of the fine mesoscale (< 100km). Impact
on the Kuroshio extention

Ratio of KE spectra
 (TBFsmoothed/TBF)

Thermal Feedback
Implication for Ocean Dynamics
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Exchange of Mechanical Energy by the
Windwork: Weak direct impact

(i) the mean geostrophic mean wind work:

FmKmg =
1
ρ0
(τ̄xūog + τ̄yv̄og)

Represents the transfer of energy mean surface
wind to the mean oceanic KE
Main source of energy of the ocean at basin
scale

(ii) the mean geostrophic eddy wind work:

FeKeg =
1
ρ0
(τ ′xu

′
og + τ ′yv

′
og)

While TFB has a impact on the surface stress, but it
only weakly alters the windwork.
Renault et al. [2017]

Thermal Feedback
Implication for Ocean Dynamics
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Mesoscale SST varibility acts on the atmospheric dynamics over the MABL.
2 main mechanisms: Donward Momentum Mixing (DMM) and Pressure Adjustment (PA)
Top-Bottom Effect: TFB first affects the entire MABL and the surface wind via the mixing and, then, the
surface stress Local and Rapid effect :
WARM-TO-COLD =⇒ converging winds =⇒ excites upward motion =⇒ enhanced cloud formation =⇒
increased chance of Rainfall
COLD-TO-WARM =⇒ diverging cells =⇒ downward motion =⇒ cloud-free sky =⇒ decreased chance of Rainfall

Larger-scale atmospheric responses:
Oceanic mesoscale structures increase the near-surface baroclinicity of the lower atmosphere. The latter has an
import impact on the regional/basin scale atmo. circulation: Alteration of extra-tropical low pressure system over
the continent and the subsequent tropical-extra-tropical interactions and the development of cloudbands (a key
local rainfall producer) - e.g. Southern Africa summer climate

Ocean Responses:

• Impact on heat fluxes (weak impact of momentum fluxes)

• Partial Control on some large scale Current by altering heat fluxes Important impact on Upwelling dynamics

Submesoscale effect poorly known !

Thermal Feedback
Take home messages
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Part II: Current Feedback
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The transfer of momentum between the atmosphere and the Ocean is
given by the stress τ⃗

τ⃗ = ρaCd(U⃗rel · |U⃗rel|)

Relative motion between the two fluids, then:

U⃗rel = U⃗a − U⃗o

Note that Cd is highly non-linear with U⃗rel

* Duhaut and Straub 2006; Dewar and Flierl 1987; Dawe and Thompson 2006; Hughes and Wilson 2008;
Eden and Dietze 2009; Seo et al., 2015,2017; Renault et al., 2016cd; Renault et al., 2017ab; Oerder et al.
2018;Renault2019abc, Renault2020ab; Jullien et al. 2020

Current Feedback
Basic concepts
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No Current Feddback Current Feddback to the 
Surface Stress

Current Feddback to the 
Surface Stress and Wind

Schematic representation of the current feedback effects over an anticyclonic eddy, considering a
uniform southward wind. The arrows represent the wind (green), surface stress (black), and surface
current (blue). The red (blue) shade indicates a positive (negative) FeKe.

Not only reduction of FeKe but negative FeKe (Deflection of energy ocean =⇒
atmosphere). Partial reenergization by the atmospheric response.

Renault et al. [2017]

Current Feedback
Basic concepts
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The mean currents induce a large imprint on the mean surface stress Negative correlation: positive
current vorticity =⇒ negative stress curl

Renault et al. [2020]

Current Feedback
Effect on Surface Stress
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No CBF CBF CFB Drives Mesoscale Stress:
Coupling Coefficients.
Correlations between surface Current
and surface stress

Definition of Coupling Coefficients sτ :
Efficiency of transfer of energy.

The more negative, the more efficient the
transfer of energy from the ocean to the
Atmosphere [Renault et al., 2016b;2019]

Current Feedback
Effect on Surface Stress
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Current Feedback
Implications for Atmospheric Dynamics
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Transfer of Energy from Mesoscale Eddies to the Atmosphere

Observations NO CFB CFB

Mean Eddy Windwork

FeKeg =
1
ρ0
(τ ′xu

′
og + τ ′yv

′
og)

Negative mean eddy windwork (blue) =⇒ Transfer form Ocean to
Atmosphere =⇒ partial reenergization of low-level wind !
[Renault et al., 2017a]

Current Feedback
Surface atmospheric response in term of energy
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Globalisation of that Result:

Renault et al. [2017b]

Current Feedback
Surface atmospheric response in term of energy
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Current Feedback
Implications for Ocean Dynamics
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Large Effect on Mesoscale Activity: Eddy Killig
• Slow Down the mean circulation

• Sinks of Energy from Mesoscale Current to the Atmosphere

• Dampening of the EKE.. but with a partial re-energization by taking account the wind response

NO CFB CFB CFB + Atm Response

Oceanic Eddy Kinetic Energy [cm2.s-2]

-55%

-40%

Renault et al. [2016c]

Current Feedback
Effect on Ocean Dynamics
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Control of the Western
Boundary

Gulf Stream

Agulhas

Renault et al. [2019b]

Current Feedback
Effect on Ocean Dynamics
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• CFB has a bottom-top effect: modify the
stress and then the wind

• Current feedback to the Atmosphere has a
crucial role in determining the energy
exchange and oceanic circulation

• Induces sink of energy from the Ocean to the
Atmosphere

• Large Dampening of the Mesoscale Activity
(submesoscale too)

• Control of Western Boundary Current by
reducing the eddy-mean flow interactions

Current Feedback
Take home message
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Non exhaustive list:

Jullien et al. [2020]
Renault et al. [2016ab;2017ab;2018;2019abc;2020ab]
Desbiolles et al. [2018;2020;2021; in prep]
Seo et al. [2016; 2017]
Pasquero et al. [2021]
Meroni et al [2020;in press]
Chelton et al. [2007]
Small et al. [2008]
Voldoire et al. [2017]:
Coupling with OASIS within SURFEX (in discussion
online HERE
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credit pic: Yuji Kashino,
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	Forwords
	Thermal Feedback
	Introduction
	Downward Momentum Mechanism
	Pressure Adjustment mechanism
	Implications for Atmosphere Dynamics
	Implications for Ocean Dynamics
	Take home messages

	Current Feedback
	Basic concept
	Effect on Surface Stress
	Effects on Low-level Atmosphere
	Effect on Ocean Dynamics
	Take home messages

	General Conclusion

