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 Gravitational Adjustment Example
Range of density anomaly: 15.7401 to 18.2599 kilogram meter-3
Range of x-dimension of the grid: -0.279297 to 286.279
Range of S-coordinate at RHO-points: -0.999023 to -0.000976562
Current time since initialization: 492 second
Current y-dimension of the grid: 1
Frame 42 in File khinst_his_WENO_512.nc
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Non-hydrostatic solver

3

! Pressure correction method (incompressible) 
! Compressible approach
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! Pressure correction method (incompressible) 
! Roullet, Molemaker, Ducousso (LOPS-UCLA)

Non-hydrostatic solver: algorithm

4
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! Pressure correction method

Non-hydrostatic solver: algorithm

5

Classical formulation of a non-hydrostatic oceanic model

Interaction with barotropic mode

Homogeneous linearized
equations

@xu + @zw = 0

@tu = �g@x⌘ � @xq/⇢0

@tw = �@zq/⇢0

@t⌘ = w(0) = �H@xu

Split-explicit algorithm 0  m  Nsplit � 1

1. Advance ⌘ and u with q
? = 0 or q? = q

n

⇢
u
m+1 = u

m
� g(�t)@x⌘

m
�

�t

⇢0
@xq

?

⌘
m+1 = ⌘

m
� �tH@xu

m+1
,

2. Compute provisional fields eun+1 and ewn+1

3. Correct eun+1 to enforce eun+1 = u
n+1

4. Solve �q =
⇢0

�t

�
@xeun+1 + @z ewn+1�

5. Correct velocity field to remove divergent part

u
n+1 = eun+1

��t@xq, w
n+1 = ewn+1

��t@zq

However : un+1
6= un+1

Solution 1 : change boundary condition on q to @zq|z=0 = 0

) u
n+1 = eun+1 = un+1
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Classical formulation of a non-hydrostatic oceanic model

2D linearized Non hydrostatic (Boussinesq) equations

@tu = �@xp/⇢0

@tw = � (@zp� ⇢g) /⇢0

@xu+ @zw = 0

⇢ = ⇢bq(✓, S,�⇢0gz)

Pressure decomposition :

p = pa + pH + q, pH = ⇢0g⌘ + g

Z 0

z

(⇢bq � ⇢0)dz
0

Boundary conditions :

@t⌘ = w(0), w(�H) = 0, p(z = 0) = ⇢0g⌘ ! q(z = 0) = 0

q : non-hydrostatic pressure which cancels the divergent part of velocity field
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Pseudo-compressible approach (Auclair et al., 2017)

Homogeneous linearized
equations

@tu = �g@x⌘ � c
2
s@x�⇢

@tw = �c
2
s@z�⇢

@t�⇢ = �⇢0(@xu+ @zw)

@t⌘ = w|
z=0

w|
z=�H

= 0

�⇢|
z=0 = 0

Semi-implicit forward-backward

u
m+1 = u

m
� �t

�
g@x⌘

m + c
2
s@x�⇢

m
�

w
m+1 = w

m
� �tc

2
s@z

⇣
�⇢

m+✓

⌘

�⇢
m+1 = �⇢

m
� ⇢0�t

⇣
@xu

m+1 + @zw
m+✓

⌘

⌘
m+1 = ⌘

m + �t(w|
z=0)

m+✓

In practice :

• cs is chosen such that: " =

p
gH

cs
⌧ 1

• The acoustic waves are integrated, in a split-explicit free surface approach,
at the same level (i.e. with the same time step) than the barotropic mode.

F. Lemarié – Recent Developments around CROCO 25
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Non-hydrostatic solver: algorithm
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Classical formulation of a non-hydrostatic oceanic model

Interaction with barotropic mode

Homogeneous linearized
equations

@xu + @zw = 0
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@xq
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⌘
m+1 = ⌘

m
� �tH@xu

m+1
,

2. Compute provisional fields eun+1 and ewn+1

3. Correct eun+1 to enforce eun+1 = u
n+1

4. Solve �q =
⇢0

�t

�
@xeun+1 + @z ewn+1�

5. Correct velocity field to remove divergent part

u
n+1 = eun+1

��t@xq, w
n+1 = ewn+1

��t@zq

However : un+1
6= un+1

Solution 1 : change boundary condition on q to @zq|z=0 = 0

) u
n+1 = eun+1 = un+1

F. Lemarié – Recent Developments around CROCO 22

Classical formulation of a non-hydrostatic oceanic model

Interaction with barotropic mode
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u
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Solution 1 : change boundary condition on q to @zq|z=0 = 0
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Classical formulation of a non-hydrostatic oceanic model

2D linearized Non hydrostatic (Boussinesq) equations

@tu = �@xp/⇢0

@tw = � (@zp� ⇢g) /⇢0

@xu+ @zw = 0

⇢ = ⇢bq(✓, S,�⇢0gz)

Pressure decomposition :

p = pa + pH + q, pH = ⇢0g⌘ + g

Z 0

z

(⇢bq � ⇢0)dz
0

Boundary conditions :

@t⌘ = w(0), w(�H) = 0, p(z = 0) = ⇢0g⌘ ! q(z = 0) = 0

q : non-hydrostatic pressure which cancels the divergent part of velocity field
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Elliptic equation needs Poisson solver 
(global computation)

Pseudo-compressible approach (Auclair et al., 2017)

Homogeneous linearized
equations

@tu = �g@x⌘ � c
2
s@x�⇢

@tw = �c
2
s@z�⇢

@t�⇢ = �⇢0(@xu+ @zw)

@t⌘ = w|
z=0

w|
z=�H

= 0

�⇢|
z=0 = 0

Semi-implicit forward-backward

u
m+1 = u

m
� �t

�
g@x⌘

m + c
2
s@x�⇢

m
�

w
m+1 = w

m
� �tc

2
s@z

⇣
�⇢

m+✓

⌘

�⇢
m+1 = �⇢

m
� ⇢0�t

⇣
@xu

m+1 + @zw
m+✓

⌘

⌘
m+1 = ⌘

m + �t(w|
z=0)

m+✓

In practice :

• cs is chosen such that: " =

p
gH

cs
⌧ 1

• The acoustic waves are integrated, in a split-explicit free surface approach,
at the same level (i.e. with the same time step) than the barotropic mode.
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Classical formulation of a non-hydrostatic oceanic model

Interaction with barotropic mode
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3. Correct eun+1 to enforce eun+1 = u
n+1

4. Solve �q =
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�t

�
@xeun+1 + @z ewn+1�

5. Correct velocity field to remove divergent part

u
n+1 = eun+1

��t@xq, w
n+1 = ewn+1

��t@zq

However : un+1
6= un+1

Solution 1 : change boundary condition on q to @zq|z=0 = 0

) u
n+1 = eun+1 = un+1
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∂xu + ∂zw = 0 Correct velocity to 
remove divergent part
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Classical formulation of a non-hydrostatic oceanic model

2D linearized Non hydrostatic (Boussinesq) equations

@tu = �@xp/⇢0

@tw = � (@zp� ⇢g) /⇢0

@xu+ @zw = 0

⇢ = ⇢bq(✓, S,�⇢0gz)

Pressure decomposition :

p = pa + pH + q, pH = ⇢0g⌘ + g

Z 0

z

(⇢bq � ⇢0)dz
0

Boundary conditions :

@t⌘ = w(0), w(�H) = 0, p(z = 0) = ⇢0g⌘ ! q(z = 0) = 0

q : non-hydrostatic pressure which cancels the divergent part of velocity field
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Pseudo-compressible approach (Auclair et al., 2017)

Homogeneous linearized
equations

@tu = �g@x⌘ � c
2
s@x�⇢

@tw = �c
2
s@z�⇢

@t�⇢ = �⇢0(@xu+ @zw)

@t⌘ = w|
z=0

w|
z=�H

= 0

�⇢|
z=0 = 0

Semi-implicit forward-backward

u
m+1 = u

m
� �t

�
g@x⌘

m + c
2
s@x�⇢

m
�

w
m+1 = w

m
� �tc

2
s@z

⇣
�⇢

m+✓

⌘

�⇢
m+1 = �⇢

m
� ⇢0�t

⇣
@xu

m+1 + @zw
m+✓

⌘

⌘
m+1 = ⌘

m + �t(w|
z=0)

m+✓

In practice :

• cs is chosen such that: " =

p
gH

cs
⌧ 1

• The acoustic waves are integrated, in a split-explicit free surface approach,
at the same level (i.e. with the same time step) than the barotropic mode.
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q

Split-explicit time-stepping

t + Δtf t + 2Δtf t + (M − 1)Δtft t + Δt

u = ū + u′ 

depth-averaged 
(barotropic) flow
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Pseudo-compressible approach (Auclair et al., 2017)

Homogeneous linearized
equations

@tu = �g@x⌘ � c
2
s@x�⇢

@tw = �c
2
s@z�⇢

@t�⇢ = �⇢0(@xu+ @zw)

@t⌘ = w|
z=0

w|
z=�H

= 0

�⇢|
z=0 = 0

Semi-implicit forward-backward

u
m+1 = u

m
� �t

�
g@x⌘

m + c
2
s@x�⇢

m
�

w
m+1 = w

m
� �tc

2
s@z

⇣
�⇢

m+✓

⌘

�⇢
m+1 = �⇢

m
� ⇢0�t

⇣
@xu

m+1 + @zw
m+✓

⌘

⌘
m+1 = ⌘

m + �t(w|
z=0)

m+✓

In practice :

• cs is chosen such that: " =

p
gH

cs
⌧ 1

• The acoustic waves are integrated, in a split-explicit free surface approach,
at the same level (i.e. with the same time step) than the barotropic mode.
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Split-explicit time-stepping

Compute            from barotropic equations ūn+1
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?
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m+1 = ⌘

m
� �tH@xu

m+1
,
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�
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t + Δtf t + 2Δtf t + (M − 1)Δtft t + Δt

u = ū + u′ 
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! Pressure correction method

 2D/3D consistency :  

• Prevents resolution of short surface waves  

 Poisson solver: 

• Complexity in sigma coordinates 

• Parallelization issues with global computations

Non-hydrostatic solver: algorithm
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! Pressure correction method 
! Compressible approach (Auclair et al., 2018)

Non-hydrostatic solver: algorithm

”While acoustic waves are in general entirely 
negligible, the effects of the approximations 
may not be.” 

Dukowics (2013) 
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! Pressure correction method 
! Compressible approach

Pseudo-compressible approach (Auclair et al., 2017)

Homogeneous linearized
equations

@tu = �g@x⌘ � c
2
s@x�⇢

@tw = �c
2
s@z�⇢

@t�⇢ = �⇢0(@xu+ @zw)

@t⌘ = w|
z=0

w|
z=�H

= 0

�⇢|
z=0 = 0

Semi-implicit forward-backward

u
m+1 = u

m
� �t

�
g@x⌘

m + c
2
s@x�⇢

m
�

w
m+1 = w

m
� �tc

2
s@z

⇣
�⇢

m+✓

⌘

�⇢
m+1 = �⇢

m
� ⇢0�t

⇣
@xu

m+1 + @zw
m+✓

⌘

⌘
m+1 = ⌘

m + �t(w|
z=0)

m+✓

In practice :

• cs is chosen such that: " =

p
gH

cs
⌧ 1

• The acoustic waves are integrated, in a split-explicit free surface approach,
at the same level (i.e. with the same time step) than the barotropic mode.
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Pseudo-compressible approach (Auclair et al., 2017)

2D linearized NH Non-Boussinesq equations

Taylor expansion of density field (with @⇢

@p
= c�2

s )

⇢ = ⇢(✓, S, p) = ⇢bq(✓, S, pref) +
@⇢

@p
�p

| {z }
�⇢

+O(�p2)

@tu = �@xp/⇢0

@tw = � (@zp� ⇢g) /⇢0

@t�⇢ = �⇢0(@xu+ @zw)

Pressure decomposition :

p = pa + pH + c
2
s�⇢, pH = ⇢0g⌘ + g

Z 0

z

(⇢bq � ⇢0)dz
0

Boundary conditions :

@t⌘ = w(0), w(�H) = 0, p(z = 0) = ⇢0g⌘ ! �⇢(z = 0) = 0
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Non-hydrostatic solver: algorithm
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Pseudo-compressible approach (Auclair et al., 2017)

Homogeneous linearized
equations

@tu = �g@x⌘ � c
2
s@x�⇢

@tw = �c
2
s@z�⇢

@t�⇢ = �⇢0(@xu+ @zw)

@t⌘ = w|
z=0

w|
z=�H

= 0

�⇢|
z=0 = 0

Semi-implicit forward-backward

u
m+1 = u

m
� �t

�
g@x⌘

m + c
2
s@x�⇢

m
�

w
m+1 = w

m
� �tc

2
s@z

⇣
�⇢

m+✓

⌘

�⇢
m+1 = �⇢

m
� ⇢0�t

⇣
@xu

m+1 + @zw
m+✓

⌘

⌘
m+1 = ⌘

m + �t(w|
z=0)

m+✓

In practice :

• cs is chosen such that: " =

p
gH

cs
⌧ 1

• The acoustic waves are integrated, in a split-explicit free surface approach,
at the same level (i.e. with the same time step) than the barotropic mode.

F. Lemarié – Recent Developments around CROCO 25
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! Pressure correction method 
! Compressible approach
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In practice :

• cs is chosen such that: " =

p
gH

cs
⌧ 1

• The acoustic waves are integrated, in a split-explicit free surface approach,
at the same level (i.e. with the same time step) than the barotropic mode.
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Split-explicit approach: the acoustic mode 
is integrated at the same fast step as the 
barotropic mode

Pseudo-compressible approach (Auclair et al., 2017)

2D linearized NH Non-Boussinesq equations

Taylor expansion of density field (with @⇢
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Non-hydrostatic solver: algorithm
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Pseudo-compressible approach (Auclair et al., 2017)
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• The acoustic waves are integrated, in a split-explicit free surface approach,
at the same level (i.e. with the same time step) than the barotropic mode.
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local 
computation



CROCO Summer school 2022 in Chile

! Pressure correction method 
! Compressible approach

Non-hydrostatic solver: algorithm

• Solves short surface waves 
• Solves mixed acoustic-gravity waves (tsunami precursor)

• Same fast step as hydrostatic code because of : 
✓ possible reduction of cS 

✓ semi-implicit treatment 
• Good scalability

Phys
ics

Perfo
rmances

• High-order pressure gradient ! accuracy for internal waves

Numeric
s

COST:  NH/H ~ 3

13

cs ≳ 5 gh
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Scalability  
local (NBQ) / global (NH) 

Slosh waves

14

Speedup = T (N )
T (2N )

Strong Scaling (fixed size 4096)

Sp
ee

du
p

NBQ

NH

N : nb processors
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Applications

External and internal waves 
Eddies, instabilities and mixing  

Nearshore circulation

15



Wave propagation experiments: 
CROCO test cases

16 CROCO Summer school 2022 in Chile
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CROCO test cases:  
TANK

17

Chen et al. (2003)

Standing wave caused by a sinusoidal 
free-surface set-up  

D=10 mηi = a cos k x

L=10 m

a = 1 mm

20 cm resolution

k = π /L
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CROCO test cases:  
TANK

18

Chen et al. (2003)

Standing wave caused by a sinusoidal 
free-surface set-up  

u = ag
k
σ

sin k x sin σ t
H Waves

η = a cos k x cos σ t

w = − ag
k2

σ
cos k x sin σ t z

T ∼ 2.0 s

D=10 mηi = a cos k x

L=10 m

σ = k gD

a = 1 mm

20 cm resolution

k = π /L

Hydrostatic Case
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CROCO test cases:  
TANK

19

Chen et al. (2003)

Standing wave caused by a sinusoidal 
free-surface set-up  

D=10 mηi = a cos k x

L=10 m

a = 1 mm

20 cm resolution

k = π /L

Non-Hydrostatic Case
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u = aσ
sin σ t

sinh kD
sin k x cosh kz

w = − aσ
sin σ t

sinh kD
cos k x sinh kz

NH Waves

σ = gk tanh kD

T ∼ 3.6 s

η = a cos k x cos σ t
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CROCO test cases:  
Internal Soliton

Internal Soliton from tilted interface in tank 6 m x 29 cm

20

Gravitational adjustment
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Horn et al. (2001)CROCO 10 cm resolution

∂η
∂t

+ c0
∂η
∂x

+ αη
∂η
∂x

+ β
∂3η
∂x3 = 0Korteweg–de Vries (KdV) equation: 

nonlinear steepening
dispersion



Large Eddy Simulations
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Large Eddy Simulation

22 CROCO Summer school 2022 in Chile

3D instabilities
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CROCO test cases: 
Kelvin-Helmholtz instability

Penney et al. (2018)

23

density anomaly (kilogram meter-3)

x-dimension of the grid

S-
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t R
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nt

s

 Gravitational Adjustment Example
Range of density anomaly: 15.7401 to 18.2599 kilogram meter-3
Range of x-dimension of the grid: -0.279297 to 286.279
Range of S-coordinate at RHO-points: -0.999023 to -0.000976562
Current time since initialization: 492 second
Current y-dimension of the grid: 1
Frame 42 in File khinst_his_WENO_512.nc

pm
ar
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es

 T
ue

 O
ct

  2
 1

8:
16

:1
5 

20
18

 

Ri = buoyancy
shear

= g
ρ

∂ρ /∂z
(∂u /∂z)2 < 0.25

resolution : 1 m

Instability condition:
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CROCO test cases:  
Lock-Exchange

24

Gravitational adjustment
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U = 0.5 g′ H
Front propagates at speed:

g′ = gδρ/ρ0 = 47.8 mm2 /s

Kelvin-Helmholtz 
instabilities develop 
along the front during 
the gravitational 
adjustment

CROCO  
1 cm resolution

Shin et al. (2004)

Heavy Light
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Other 3D instabilities in CROCO

Comparison with
Zikanov (2003), 

J. Fluid Mech., 495, pp. 343–368.
Configuration
• periodic horiz. bound. cond.
• free-slip bottom
• constant stress at the top
• domain: 1 x 1 x 1.5 u*/ f
• resolution:
       48 x 48 x  90 nodes for Croco NBQ
       64 x 64 x 120 nodes for Zikanov (2003)

In Croco NBQ, u’ & v’ occur 
even below the Ekman layer. 
(i.e., zf/u* < -1)
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horizontally and 1-day averaged velocity

blue: croco NBQ (MILES case)

red: Zikanov (2003)
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Hodograph

blue: croco NBQ (MILES case)

red: Zikanov (2003)
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blue: croco NBQ (MILES case)
red: Zikanov (2003)

N. Suzuki & B. Fox-Kemper [ICR, Ger.]; G. Xu (Washington U.) … 

Ekman layer

Submesoscale 
vortex

Sea level

25

Hydrothermal plume 
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Wave effect on currents: 
Langmuir turbulence

Herman et al. (2020)  

26

resolution : 3 m

ρ uS × ξVortex Force:

Sargassum

Frazil ice: LES simulation with 
wave-averaged equations
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Nonlinear internal 
waves at Gibraltar

27

Tides
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Bordois et al., 2018

Nonlinear internal waves

28
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50 m resolution

29

Internal hydraulic jump 
Hilt et al. (2019)
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Multiscale modeling

! 50 m resolution

NESTED GRIDS

Multi-grids

30
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Surface gravity waves 
& nearshore dynamics

31
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Rips and surfzone eddies

32

Plumes

Rib structures

Small scales 
(foam)

Surfers

Modified from Kirby et al.

! Structure:  
! plumes, ribs, patches 

! Dynamics : 
! intrinsic or forced variability? 
! 2D or 3D? 

! Impacts: 
! surf hazard 
! surf mixing 
! surf-shelf exchange
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Marchesiello et al. (2015)

14/00 15/00 16/00 17/00
−100

−50

0

50

100

Local Time (day/hour)

C
ro

ss
−s

ho
re

 c
ur

re
nt

 [c
m

/s
]

 

 
data
model

non-asymptotic in the sense that some additional non-wave terms,
beyond the minimum required for asymptotic consistency as defined
in MRL04, are included for completeness (e.g., the time-derivative of
surface elevation in the kinematic boundary condition and depth-
integrated mass balance), along with additional non-conservative
wave effects (e.g., breaker acceleration).

We first write the model equations in Cartesian (x,y,z,t) coordi-
nates. The notation is slightly different from MRL04, and the quan-
tities are dimensional. We combine the infragravity wave and
current dynamics, which were asymptotically separated in
MRL04. The momentum balance is written in terms of a dynamic
pressure / (normalized by mean density q0) and sea level f after
subtracting the wave-averaged quasi-static components /̂ and f̂
(n.b., MRL04, Sections 6 and 9.2.3, and LRM07, Eqs. (3.8)–(3.10))
that occur even without currents. All wave quantities are refer-
enced to the local wave-averaged sea level, z ¼ fþ f̂, rather than
the mean sea level, z = 0. The vertical coordinate range is
#hðxÞ 6 z 6 fþ f̂. The equations make the particular gauge choice
for the decomposition between VF (J,K) and Bernoulli head K de-
scribed in MRL04, Section 9.6. The new WEC terms for ROMS are
written on the right side of the equations below. Boldface vectors
are horizontal only, and 3D vectors are designated by (horizontal,
vertical).

ou
ot

þ ðu & $?Þuþw
ou
oz

þ f ẑ' uþ $?/# F ¼ #$?Kþ Jþ Fw;

o/
oz

þ gq
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þ K;
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þ ðu & $?Þc þw
oc
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oz
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o
oz

E
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! "
:

ð1Þ

F is the non-wave non-conservative forces, Fw is the wave-induced
non-conservative forces, c is any material tracer concentration (e.g.,
T and S), and C is the non-conservative tracer forcing, where $? is
the horizontal differential operator. The system (1) is completed
with the equation of state.

The 3D Stokes velocity (uSt,wSt) is non-divergent and defined for
a monochromatic wave field by

uSt ¼ A2r
2sinh2½H)

cosh½2Z)k;

wStðzÞ ¼ #$? &
Z z

#h
uSt dz0:

ð2Þ

h(x) is the resting depth of the ocean; A is the wave amplitude; k is
its wavenumber vector and k is its magnitude;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh½H)

q
ð3Þ

is its intrinsic frequency; and normalized vertical lengths are

H ¼ k hþ fþ f̂
$ %

* kD; and Z ¼ kðzþ hÞ; ð4Þ

where D ¼ hþ fþ f̂ is the wave-averaged thickness of the water
column. The horizontal and vertical VF (inclusive of the Stokes–
Coriolis term) and Bernoulli head (after removing quasi-static
terms) are

J ¼ #ẑ' uSt ẑ & $? ' uð Þ þ fð Þ #wSt ou
oz

;

K ¼ uSt & ou
oz

;

K ¼ 1
4

rA2

ksinh2½H)

Z z

#h

o2V
oz02

sinh½2kðz# z0Þ)dz0;
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with V ¼ k & u. The wave-induced tracer diffusivity is defined by

E ¼ 1
2

o
ot

A sinh½Z)
sinh½H)

& '2

: ð6Þ

The quasi-static sea-level component is defined by

f̂ ¼ # patm

gq0
# A2k
2 sinh½2H)

: ð7Þ

It contains both an inverse-barometric response to changes in
atmospheric pressure patm and a wave-averaged setup/setdown.

With a multi-component wave field, A2 is replaced in (2)–(7) by
the sea-level spectrum G(h,r) with integration over wavenumber-
vector angle h and frequency r. This implies a superposition of the
WEC contributions from different components, consistent with the
asymptotic theoretical assumption of small wave slope Ak.

2.2. Boundary conditions

The boundary conditions for ROMS include the usual stress and
heat and material flux conditions plus the following kinematic and
pressure continuity conditions, again with the additional WEC
terms on the right side:

wj#h þ uj#h & $?h ¼ 0;

wjfþf̂ #
of
ot

# ðujfþf̂ & $?Þf ¼ $? & USt þ of̂
ot
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with

P ¼ gA2

2r
tanh½H)
sinh½2H)
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((((
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oz02

cosh½2kz0)dz0
!

# 2k tanh½H)Vjfþf̂

)
: ð9Þ

In MRL04, Section 9.3, there are additional quasi-static components
inP of higher asymptotic order in the wave slope Ak, but, unlike in f̂
in (8), they have no dynamical coupling with the currents in (1) and
(8). So, without a specific motivation for examining the various de-
leted quasi-static terms, they are not presently included in ROMS,
although they could easily be added as a diagnostic.

2.3. Barotropic mode

The barotropic mode is derived from (1) as a vertical integral of
the continuity equation and a vertical average of the horizontal
momentum equation. With the WEC terms kept on the right side,
the result is

of
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ot
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½J# $?K)dzþ Fw:
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The dots in the barotropic momentum equation indicate contribu-
tions from all the left-side terms in the horizontal momentum
equation in (1) other than the acceleration. Here

U ¼
Z fþf̂

#h
udz and USt ¼

Z fþf̂

#h
uSt dz ð11Þ

are the horizontal volume transports by Eulerian and Stokes
currents, respectively, and !u ¼ U=D is the barotropic velocity. (Note

18 Y. Uchiyama et al. / Ocean Modelling 34 (2010) 16–35

McWilliams et al. (2004)
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3D wave-averaged modeling
Channeled rip currents
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Wave-resolving models

Long-crested waves Short-crested waves
Frequency and directional 

spectrum

34

Short-crested waves
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Flash rip generation by 
short-crested waves  

(Peregrine, 1998)

2D Wave-resolving models

Vorticity 
generation

2D wave-resolving Boussinesq model 
(Feddersen et al., 2011) 

35

Short-crested waves and flash rips
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2D Wave-resolving models

Boussinesq 
(1872)

Too 
much 
energy 
at VLF ?

 Feddersen et al. (2011)

36

Vorticity 
generation

2D wave-resolving Boussinesq model 
(Feddersen et al., 2011) 

Short-crested waves and flash rips



! VOF (LES) models: solves breaking turbulence 

! Free-surface (RANS) models: solves current instabilities

3D wave-resolving models

37

Lubin & Glockner (2015)

Li & Darlymple (1998)

Solving or not the breaking turbulence

Roller vortices

Rib vortices

CROCO Summer school 2022 in Chile

CROCO 
NHWAVE 
SWASH

Time scale < wave period

Time scale > wave period



GLOBEX (B2) - Michalet et al. (2014)

Validation with flume experiments

Scheldt Wave Flume (Deltares)  

38

✓ Resolution: 12 cm, 10 sigma levels 
✓ Breaking-induced turbulence: 
   WENO5 + k-⍵

CROCO Summer school 2022 in Chile



LIP-11D (1B) - Roelvink & Reniers (1995)
Large-scale flume

39

Delta Flume (Deltares)  

JONSWAP 
waves

Mean U

Test of resolution 
and turbulence 

closure

TKE

CROCO Summer school 2022 in Chile



Application to a longshore-uniform 
beach in Grand Popo, Benin

40

Resolution: 50 cm, 10 lev. 
SGS model:  WENO5 + k-⍵

JONSWAP wave spectrum 
with directional spreading 

Hs=1.15 m, Tp=11 s, Dir=10° 
(mid-tide, March 13 2014)

CROCO Summer school 2022 in Chile



Shallow vs. Deep breaking experiments

42

Shallow breaking (3D) Deep breaking (pseudo-2D)

Cross-shore 
currents

CROCO Summer school 2022 in Chile
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Deep breaking (2D)

Wave-mean vertical vorticity patterns 
Flash rips and mini-rips

Shallow breaking (3D)

Rib structure

CROCO Summer school 2022 in Chile



Rib structures in turbidity 
with a suspended sediment model

45

Shallow breaking (3D) Deep breaking (2D)

Turbidity patterns (brown) and foam/convergence lines (white)

Rib structure

Drone image

CROCO Summer school 2022 in Chile
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Turbulence cascades 
less VLF, more IG eddies

VLF

Infragravity

Swell2D

3D data

2D

3D

CROCO Summer school 2022 in Chile

Boussinesq 
(1872)



ROMS surface temperature

E  150oE  180oW  150oW  120oW   90oW 
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Large scale applications

47
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Quasi-hydrostatic equations  
Non-traditional Coriolis terms

B. Delormes & L. Thomas, Stanford U.

48

Equatorial wave over topography 
150 days into the simulation 

wave period = 10 days

Marshall et al. (1997); Gerkema et al (2008):

Equatorial Wave Over Topography

150 days into the simulation (wave period = 10 days)

Bertrand Delorme – 10/10/2018

MITgcm - H

CROCO - H

Equatorial Wave Over Topography

150 days into the simulation (wave period = 10 days)

Bertrand Delorme – 10/10/2018

CROCO - QH

MITgcm - QH
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Numerical methods

49
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1- High-order benefit

50

Dispersive centered schemes

C2

C4 Spectral

Gottlieb &  
Orszag, 1977 ϵ = c

Δx2

6
∂3u
∂x3

ϵ = c
Δx4

30
∂5u
∂x5
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Upwind schemes of any order n have optimal 
damping of dispersion error (Soufflet et al. 2016)

! Default choice in CROCO

51
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Diffusive upstream schemes
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1- High-order benefit

UP1 UP3
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Effective resolution: x2 
Cost: + 6%

1- High-order benefit: submesoscales

UP3 UP5

Ideal Meddy 
(Menesguen et al., 
2018)

52

UP3

UP5

ϵ = c
Δx3

12
∂4u
∂x4 ϵ = c

Δx5

60
∂6u
∂x6
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1- High-order benefit: Internal solitons

CROCO-NBQ

S-NBQ

Gibraltar – 200m resolution

High-order schemes

Low-order schemes

53
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2- Hyperviscous shocks & vortices

Hyperviscosity does not preserve monotonicity 
(e.g., hyperdiffusion or hyper-Burger equations) : 

!  Oscillations near shocks (Boyd,  JSC 1994) 
!  Hyperviscous vortices (Jimenez, JFM 1994)

Viscous shock ~ Gibb’s shock
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UP3 + SPLINES

2- Hyperviscous shocks: IGW
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TVD 

2- Hyperviscous shocks: IGW
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density anomaly (kilogram meter-3)
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Range of density anomaly: 15.74 to 18.26 kilogram meter-3
Range of x-dimension of the grid: -0.279297 to 286.279
Range of S-coordinate at RHO-points: -0.999023 to -0.000976562
Current time since initialization: 492 second
Current y-dimension of the grid: 1
Frame 42 in File khinst_his_512_TS_VADV_SPLINES.nc
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3- HYPERVISCOUS SHOCKS: KHI

density anomaly (kilogram meter-3)
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Range of density anomaly: 15.7401 to 18.2599 kilogram meter-3
Range of x-dimension of the grid: -0.279297 to 286.279
Range of S-coordinate at RHO-points: -0.999023 to -0.000976562
Current time since initialization: 492 second
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density anomaly (kilogram meter-3)
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Range of density anomaly: 15.7401 to 18.2599 kilogram meter-3
Range of x-dimension of the grid: -0.279297 to 286.279
Range of S-coordinate at RHO-points: -0.999023 to -0.000976562
Current time since initialization: 492 second
Current y-dimension of the grid: 1
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All monotonic (WENO5)

Non monotonic [wρ]Z  (SPLINES)Dispersive [wρ]Z (AKIMA)
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◆ Turbulent closure (LES / RANS)  
✓  3D GLS (k-epsilon, k-omega …) 
✓  3D Smagorinsky 
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Turbulence closure : RANS, LES or MILES
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Turbulence closure : RANS, LES or MILES

To be effective, SGS models must be used with high-order advection 
schemes that include shock-capturing skills (MILES)

νSmag ~ CS L U 

νNum  ~ CN L U 

CS ~ 0.01 

CN = 1/12 " UP3 
        1/60 " UP5

WENO5 C2 + Diff

◆ Physical / Numerical closure

(Soufflet et al., 2016)
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CONCLUSIONS

◆  CROCO is designed for bridging gaps 
◆ From quasi-geostrophic eddies to micro-turbulence 
◆ From oceanic to nearshore zones 

◆  CROCO-NBQ is an original approach with many advantages 

◆ accuracy, performance, versatility 

◆ Multiple tests and applications show good performances and 
helps further developments 

◆  There is room for improving numerical methods and 
parametrizations: 
◆ High-order monotonic advection schemes 
◆ Immersed boundary conditions 
◆ Multi-resolution
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