CROCO

Coastal and Regional Ocean COmmunity model

Patrick Marchesiello

Advances in nonhydrostatic CROCO … towards realistic LES models for the ocean

Advanced Ocean Modeling with CROCO January 19-21 2022

CROCO Summer school 2022 in Chile

pmarches Tue Oct 2 18:16:15 2018

Non-hydrostatic solver

Pressure correction method (incompressible) Compressible approach

CROCO Summer school 2022 in Chile

- **Pressure correction method (incompressible)**
	- ▶ Roullet, Molemaker, Ducousso (LOPS-UCLA)

Pressure correction method Pressure correction

$$
p=p_a+p_H+q
$$

External Homogeneous linearized
Conditions equations **compared to the set**

 $\partial_x u + \partial_z w = 0$ $\partial_t u = -g\partial_x \eta - \partial_x q/\rho_0$ $\partial_t w = -\partial_z q/\rho_0$ $\partial_t \eta = w(0) = -H \partial_x \overline{u}$ However : *^uⁿ*+1 ⁶⁼ *^uⁿ*+1 $\partial^2 u + \partial^2 u = 0$ $\partial_t w = -\partial_z q/\rho_0$ $\int g |_{z=0} = 0$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{90}{x}$ $\frac{1}{2}$ $\frac{d\theta}{dt} = -\frac{\partial z q}{\partial \theta}$ $w|_{z=-H} = 0$

at the same level (i.e. with the same time step) than the barotropic mode.

Non-hydrostatic solver: algorithm Homogeneous linearized $\mathbf{Solver:}$ algorithm **1. Advance** α

Pressure correction method Pressure correction $\overline{\mathbf{v}}$ and $\overline{\mathbf{v}}$ to $\overline{\mathbf{v}}$

.............
.

$$
p=p_a+p_H+q
$$

Homogeneous linearized Boundary conditions : @*t*⌘ = *w*(0) = *H*@*xu* equations \vert equations linearized by the control

$$
\begin{aligned}\n\partial_x u + \partial_z w &= 0 \\
\partial_t u &= -g \partial_x \eta - \partial_x q/\rho_0 \\
\partial_t w &= -\partial_z q/\rho_0\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\partial_t u = w(0) &= -H \partial_x \overline{u} \\
q|_{z=0} &= 0\n\end{aligned}
$$
\nSolve $\Delta q = \frac{\rho_0}{\Delta t} \left(\partial_x \widetilde{u}^{n+1} + \partial_z \widetilde{w}^{n+1} \right)$ \n
$$
\begin{aligned}\n\partial_{1} u = w(0) &= -H \partial_x \overline{u} \\
\partial_{2} u = 0\n\end{aligned}
$$

equations
\n
$$
\begin{aligned}\n\partial_x u + \partial_z w &= 0 \\
\partial_t u &= -g \partial_x \eta - \partial_x q/\rho_0 \\
\partial_t w &= -\partial_z q/\rho_0\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\frac{u^{n+1} = \tilde{u}^{n+1} - \Delta t \partial_x q, \quad w^{n+1} = \tilde{w}^{n+1} - \Delta t \partial_z q}{\rho_x u + \partial_z w} \\
\frac{\partial_x u}{\partial_x u + \partial_z w} &= 0\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Correct velocity to remove divergent part} \\
w|_{z=-H} &= 0 \\
q|_{z=0} &= 0\n\end{aligned}
$$
\nSolve $\Delta q = \frac{\rho_0}{\Delta t} (\partial_x \tilde{u}^{n+1} + \partial_z \tilde{w}^{n+1})$

Elliptic equation needs Poisson solver

(alobal computation) However : *^uⁿ*+1 ⁶⁼ *^uⁿ*+1 (global computation)

CROCO Summer school 2022 in Chile **F. Lemarie – Recent Developments around CROCO ´ 22**) *^uⁿ*+1 ⁼ *^u*e*ⁿ*+1 ⁼ *^uⁿ*+1 **F. Lemarie – Recent Developments around CROCO ´ 25**

at the same level (i.e. with the same time step) than the barotropic mode.

Pressure correction method Pressure correction

$$
p=p_a+p_H+q
$$

External Homogeneous linearized
Conditions equations **compared to the set**

$$
\partial_x u + \partial_z w = 0
$$
\n
$$
\partial_t u = -g \partial_x \eta - \partial_x q/\rho_0
$$
\n
$$
\partial_t w = -\partial_z q/\rho_0
$$
\n
$$
\partial_t \eta = w(0) = -H \partial_x \overline{u}
$$
\n
$$
w|_{z=-H} = 0
$$
\n
$$
q|_{z=0} = 0
$$
\n(Barotropic) flow

$$
p = p_a + p_H + q
$$
\nHomogeneous linearized equations

\n
$$
u = \bar{u} + u'
$$
\nHomogeneous linearized equations

\n
$$
d = \sum_{i=1}^{\infty} \frac{1}{u_i} + \sum_{i
$$

 S_n lit-explicit time-stepping

at the same level (i.e. with the same time step) than the barotropic mode.

However : *^uⁿ*+1 ⁶⁼ *^uⁿ*+1

Pressure correction method Pressure correction method

$$
p=p_a+p_H+q
$$

equations dinearized equations **compared to the set** @*xu* + @*zw* = 0

$$
\begin{array}{rcl}\n\partial_x u & + & \partial_z w = 0 \\
\partial_t u & = & -g \partial_x \eta - \partial_x q/\rho_0 \\
\partial_t w & = & -\partial_z q/\rho_0\n\end{array}\n\qquad\n\text{Comp}
$$

$$
\begin{aligned}\n\partial_t \eta &= w(0) = -H \partial_x \overline{u} \\
w|_{z=-H} &= 0 \\
q|_{z=0} &= 0\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\frac{u^{n+1} = \overline{u}^{n+1} - \Delta t \partial_x q, \quad w^{n+1} = \overline{w}^{n+1} - \Delta t \partial_z q}{\text{However: } \overline{u}^{n+1} \neq \overline{u^{n+1}}} \\
\end{aligned}
$$

• c^s is chosen such that: " =

 $\overline{}$

$$
p = p_a + p_H + q
$$
\nHomogeneous linearized equations

\n

^uⁿ+1 ⁼ *^u*e*ⁿ*+1*t*@*xq, wⁿ*+1 ⁼ *^w*e*ⁿ*+1*t*@*z^q*

Compute \bar{u}^{n+1} from barotropic equations u^{n+1} from barotropic equence *qu* \overline{u}^{n+1} from barotropic equations **3.** Correct *^u*e*ⁿ*+1 to enforce *^u*e*ⁿ*+1 ⁼ *^uⁿ*+1

^z=0)

3. Correct *^u*e*ⁿ*+1 to enforce *^u*e*ⁿ*+1 ⁼ *^uⁿ*+1 $\partial_t w = -\partial_z q/\rho_0$ Correct velocity field to remove divergent part \Box x *x*^{*u*}ence to remove diverse to $x+1$ $\approx x$ ⁿ $\begin{array}{rcl} u & = u & -\Delta t O_x q, \quad w & = w & -\Delta t O_z \end{array}$ $u^{n+1} = \tilde{u}^{n+1} - \Delta t \partial_x a$, $w^{n+1} = \tilde{w}^n$ ⌘*^m*+1 ⁼ ⌘*^m* ⁺ *t*(*w[|] m*+✓ **5.** Correct velocity field to remove divergent part $\partial_x \overline{u}$ $u^{n+1} = \widetilde{u}^{n+1} - \varDelta t \partial_x q, \quad w^{n+1} = \widetilde{w}^{n+1} - \varDelta t \partial_z q$ *t <i>x* α + β + γ + γ

> $\sqrt{2}$ H owever : $\overline{u}^{n+1} \neq \overline{u^{n+1}}$

However : *^uⁿ*+1 ⁶⁼ *^uⁿ*+1 $\frac{1}{2}$ $\frac{1}{2}$ *z*_{n+1} = 0 $\frac{Solution 1}{2}$: change boundary condition on *q* to $\partial_z q|_{z=0} = 0$ *cs* ت
المسابق $\frac{1}{2}$ $\frac{1}{2}$

F. Lemarie – Recent Developments around CROCO ´ 22

) *^uⁿ*+1 ⁼ *^u*e*ⁿ*+1 ⁼ *^uⁿ*+1

However : *^uⁿ*+1 ⁶⁼ *^uⁿ*+1

 \bullet The acoustic waves are integrated, in a split-explicit free surface approach, in a spli at the same level (i.e. with the same time step) than the barotropic mode.

- **Pressure correction method**
	- 2D/3D consistency :
		- Prevents resolution of short surface waves
	- Poisson solver:
		- Complexity in sigma coordinates
		- Parallelization issues with global computations

- **Pressure correction method**
- ▶ Compressible approach (Auclair et al., 2018)

"While acoustic waves are in general entirely negligible, the effects of the approximations may not be."

Dukowics (2013)

⇢ ⁼ ⇢(✓*, S, p*) = ⇢bq(✓*, S, p*ref) + @⇢ @*p p* \sum +*O*(*p*) Non-hydrostatic solver: algorithm

- **Pressure correction method**
- ! Compressible approach @*t*⇢ = ⇢0(@*xu* + @*zw*)

 $P^2 = P^2 + P^2 + P^2 = \frac{1}{2}P^2$ $p = p_a + p_H + c_s^2$ $\delta \rho$

Homogeneous linearized equations $\frac{1}{2}$ = 0, *w*(*x*) = 0, *w*(*x*) = 0, *a*) = 0,

$$
\partial_t u = -g \partial_x \eta - c_s^2 \partial_x \delta \rho
$$

\n
$$
\partial_t w = -c_s^2 \partial_z \delta \rho
$$

\n
$$
\partial_t \delta \rho = -\rho_0 (\partial_x u + \partial_z w)
$$

\n
$$
\partial_t \eta = w|_{z=0}
$$

\n
$$
w|_{z=-H} = 0
$$

\n
$$
\delta \rho|_{z=0} = 0
$$

In practice :

⇢ ⁼ ⇢(✓*, S, p*) = ⇢bq(✓*, S, p*ref) + @⇢ @*p p* \sum +*O*(*p*) Non-hydrostatic solver: algorithm

- **Pressure correction method**
- ! Compressible approach @*t*⇢ = ⇢0(@*xu* + @*zw*)

 $p = p_a + p_H + c_s^2$

Homogeneous linearized equations equations

$$
\begin{aligned}\n\partial_t u &= -g \partial_x \eta - c_s^2 \partial_x \delta \rho \\
\partial_t w &= -c_s^2 \partial_z \delta \rho \\
\partial_t \delta \rho &= -\rho_0 (\partial_x u + \partial_z w) \\
\partial_t \eta &= w|_{z=0} \\
w|_{z=-H} &= 0 \\
\delta \rho|_{z=0} &= 0\n\end{aligned}\n\qquad\n\begin{aligned}\nu^{m+1} &= u^m - \delta t \left(g \partial_x \eta^m + c_s^2 \partial_x \delta \rho^m \right) \\
w^{m+1} &= w^m - \delta t c_s^2 \partial_z \left(\delta \rho^{m+\theta} \right) \\
\delta \rho^{m+1} &= \delta \rho^m - \rho_0 \delta t \left(\partial_x u^{m+1} + \partial_z w^{m+\theta} \right) \\
\delta \rho|_{z=0} &= 0\n\end{aligned}
$$

In practice :

 $p = p_a + p_H + c_s^2 \delta \rho$ Split-explicit approach: the acoustic mode is integrated at the same fast step as the *z* barotropic mode

Semi-implicit forward-backward

$$
u^{m+1} = u^m - \delta t \left(g \partial_x \eta^m + c_s^2 \partial_x \delta \rho^m \right)
$$

$$
w^{m+1} = w^m - \delta t c_s^2 \partial_z \left(\delta \rho^{m+\theta} \right)
$$

$$
\delta \rho^{m+1} = \delta \rho^m - \rho_0 \delta t \left(\partial_x u^{m+1} + \partial_z w^{m+\theta} \right)
$$

$$
\eta^{m+1} = \eta^m + \delta t (w|_{z=0})^{m+\theta}
$$

local computation

- **Pressure correction method**
- \triangleright Compressible approach

Physics

Performances

- Solves short surface waves
- Solves mixed acoustic-gravity waves (tsunami precursor)
- High-order pressure gradient \rightarrow accuracy for internal waves
	- Same fast step as hydrostatic code because of :
		- \checkmark possible reduction of c_s
		- ✓ semi-implicit treatment
	- Good scalability

 $c_s \geq 5\sqrt{gh}$

Scalability local (NBQ) / global (NH)

Speedup = *T* (*N*) *T* (2*N*)

N : nb processors

Strong Scaling (fixed size 4096) NBQ 2.5 1.5 Speedup 0.5 0.5 $\mathbf{1}$ 1.5 \overline{c} NH 2.5 16/32 32/64 64/128 128/256 256/512 Number of cores

CROCO

Coastal and Regional Ocean COmmunity model

Applications

External and internal waves Eddies, instabilities and mixing Nearshore circulation

ROCO Summer school 2022 in Chile

Wave propagation experiments: CROCO test cases

CROCO test cases:
Coastal and Regional Ocean Comm**r in NTL** TANK Chen et al. (2003)

Standing wave caused by a sinusoidal free-surface set-up

CROCO test cases: TANK Chen et al. (2003)

Hydrostatic Case

CHANGERS

CROCO Summer school 2022 in Chile

CROCO test cases: TANK Chen et al. (2003)

Non-Hydrostatic Case

Children Store

CROCO Summer school 2022 in Chile

CROCO test cases:
Coastal and Regional Grap Communic Add to n Internal Soliton

Internal Soliton from tilted interface in tank 6 m x 29 cm

CROCO 10 cm resolution Horn et al. (2001)

Large Eddy Simulations

CROCO Summer school 2022 in Chile

Large Eddy Simulation

S-coordinate at RHO-points CROCO test cases: Coastal and Kelvin-Helmholtz instability Penney et al. (2018) $Ri = \frac{buoyancy}{shear} = \frac{g}{\rho}$ ∂*ρ*/∂*z* Instability condition: $Ri = \frac{\partial u \partial y \partial x}{\partial h \partial x} = \frac{g}{\rho} \frac{\partial p \partial z}{(\partial u/\partial z)^2} < 0.25$ ρ' / kg m⁻³ s / psu 0.8 36 35.8 -50 -50 resolution : 1 *m* 0.6 $\frac{d}{dx}$ 0.4 -100 -100 35.2 $\mathsf E$ 0.2 Ε Gravitation and Adjustment Example Example $\sum_{N} -150$ Range of density anomaly: 15.7401 to 18.2599 kilogram meter-3 \circ Range of x-dimension of the grid: -0.279297 to 286.279 -200 -0.2 Range of S-coordinate at RHO-points: -0.999023 to -0.999023 to -0.00097656256256256256256256256256256256766256 -0.4 $\overline{0}$ since initialization: $\overline{0}$ second initialization: $\overline{0}$ second initialization: $\overline{0}$ second in $\overline{0}$ sec -250 34 Current y-dimension of the grid: 1990 -0.6 100 150 250 0 50 100 150 200 250 $\mathbf{0}$ 50 200 x/m C_1 / p su $t = 5s$ 35.06 35.05 -50 35.05 35.04 -100 35.04 **L** psu $\mathsf E$ 35.03 \overline{N} -150 35.03 σ 35.02 35.02 -200 35.01 35.01 -250 35 35 -0.4 -0.2 0.2 0.4 0.6 0.8 $\mathbf{0}$ 50 100 150 200 250 -0.6 \circ x/m $p'/$ kg m⁻³

CROCO test cases:
Coastal and Regional Open 12 http://abora.com Lock-Exchange

Front propagates at speed:

$$
U = 0.5\sqrt{g'H}
$$

$$
g' = g\delta\rho/\rho_0 = 47.8 \text{ mm}^2/s
$$

Kelvin-Helmholtz instabilities develop along the front during the gravitational adjustment

b.

Wave effect on currents: Coastal and Regional Ocean COmmLangmuir turbulence

Herman et al. (2020)

Vortex Force: *ρ uS* × *ξ*

Frazil ice: LES simulation with wave-averaged equations

resolution : 3 *m*

Nonlinear internal waves at Gibraltar

CROCO Summer school 2022 in Chile

27

Tides

Nonlinear internal waves

 \blacktriangleright

Internal hydraulic jump Hilt et al. (2019)

rho0=0kg/m3 angle=21.6716° /home/hilm/NHOMS/NUWA/Run_Gbr3d_50mV2_nbq_VE_N40_prter_TP/OUTPUT/GBR_NBQ_his_CS.nc section entre x=-5.8058;-5.7063° y=35.9129;35.9457° à it=300*2min

Multiscale modeling

SST - CROCO - MEDIONE - 2015/05/01

NESTED GRIDS

 \rightarrow 50 m resolution

Surface gravity waves & nearshore dynamics

ь

Weather & Marine Related Deaths

(Adapted from the National Weather Service)

▶ Structure:

! plumes, ribs, patches

! Dynamics :

- ! intrinsic or forced variability?
- ▶ 2D or 3D?

▶ Impacts:

- ! surf hazard
- \triangleright surf mixing
- ! surf-shelf exchange

Rips and surfzone eddies

 \mathbf{A} McWilliams et al. (2004)

$$
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla_{\perp}) \mathbf{u} + w \frac{\partial \mathbf{u}}{\partial z} + f \hat{\mathbf{z}} \times \mathbf{u} + \nabla_{\perp} \phi - \mathbf{F} = -\nabla_{\perp} \mathcal{K} + \mathbf{J} + \mathbf{F}^{w},
$$
\n
$$
\frac{\partial \phi}{\partial z} + \frac{g \rho}{\rho_{0}} = -\frac{\partial \mathcal{K}}{\partial z} + K,
$$
\n
$$
\nabla_{\perp} \cdot \mathbf{u} + \frac{\partial w}{\partial z} = 0,
$$
\n
$$
\frac{\partial c}{\partial t} + (\mathbf{u} \cdot \nabla_{\perp}) c + w \frac{\partial c}{\partial z} - \mathcal{C} = -(\mathbf{u}^{St} \cdot \nabla_{\perp}) c - w^{St} \frac{\partial c}{\partial z} + \frac{1}{2} \frac{\partial}{\partial z} \left[\mathcal{E} \frac{\partial c}{\partial z} \right].
$$

F is the non-wave non-conservative forces, F^w is the wave-induced

IPT $\overline{\mathsf{d}}$ A sinh½Z) 3D wave-averaged modeling T , and T is defined by $\frac{1}{2}$ is defined by $\frac{1}{2}$ Channeled rip currents

gq⁰

Cross−shore current [cm/s]

===========
;

: ð7Þ

Marchesiello et al. (2015)
--------------------------------- 5

#h

Wave-resolving models Short-crested waves

 $\overline{2}$ $1²$ $Z(m)$ -1 150 -2^{-} ζ_{120} 30 0^o **4 (B)** 60° 60 $x_{(q_0)}$ 90 $\tilde{30}$ 120 $\overline{0}$ 150

Long-crested waves Short-crested waves
Frequency and directional spectrum

2D Wave-resolving models Short-crested waves and flash rips

Flash rip generation by short-crested waves (Peregrine, 1998)

2D wave-resolving Boussinesq model (Feddersen et al., 2011)

2D Wave-resolving models Short-crested waves and flash rips

2D wave-resolving Boussinesq model (Feddersen et al., 2011)

3D wave-resolving models Solving or not the breaking turbulence

! VOF (LES) models: solves breaking turbulence

Time scale < *wave period*

Lubin & Glockner (2015)

! Free-surface (RANS) models: solves current instabilities

CROCO NHWAVE SWASH

Time scale > *wave period*

Li & Darlymple (1998)

CROCO Summer school 2022 in Chile

Scheldt Wave Flume (Deltares)

✓ Resolution: 12 cm, 10 sigma levels ✓ Breaking-induced turbulence: WENO5 + *k*-⍵

CROCO Summer school 2022 in Chile

GLOBEX (B2) - Michalet et al. (2014)

Validation with flume experiments

LIP-11D (1B) - Roelvink & Reniers (1995) Large-scale flume

Delta Flume (Deltares)

CROCO Summer school 2022 in Chile

Application to a longshore-uniform beach in Grand Popo, Benin

Coastal and Rec**Shallow vs. Deep breaking experiments**

b.

Wave-mean vertical vorticity patterns Coastal and Regional Ocean **Flash rips and mini-rips**

CROCO Summer school 2022 in Chile

Rib structures in turbidity with a suspended sediment model

Turbidity patterns (brown) and foam/convergence lines (white)

Turbulence cascades less VLF, more IG eddies

CROCO Summer school 2022 in Chile

Quasi-hydrostatic equations

Non-traditional Coriolis terms

B. Delormes & L. Thomas, Stanford U.

CROCO Summer school 2022 in Chile

D

CROCO Coastal and Regional Ocean COmmunity model

Numerical methods

Diffusive upstream schemes

Upwind schemes of any order *n* have optimal damping of dispersion error (Soufflet et al. 2016)

$$
\Im(\omega) = -2 \left[\frac{c_0 - c_g(k)}{(n+1)\Delta x} \right]
$$

\rightarrow Default choice in CROCO

1- High-order benefit: submesoscales

CROCO Summer school 2022 in Chile

1- High-order benefit: Internal solitons

Gibraltar – 200m resolution

2- Hyperviscous shocks & vortices

Hyperviscosity does not preserve monotonicity

(e.g., hyperdiffusion or hyper-Burger equations) :

- \rightarrow Oscillations near shocks (Boyd, JSC 1994)
 \rightarrow Hyperviscous vortices (limenez IFM 1994)
- ! Hyperviscous vortices (Jimenez, JFM 1994)

Viscous shock \sim Gibb's shock

2- Hyperviscous shocks: IGW

 \blacktriangleright

CROCO
Coasta 2- Hyperviscous shocks: IGW

3- HYPERVISCOUS SHOCKS: KHI

Dispersive $[w\rho]_Z$ (AKIMA) N on monotonic $[w\rho]_Z$ (SPLINES)

All monotonic (WENO5)

Turbulence closure : RANS, LES or MILES

◆ Turbulent closure (LES / RANS)

- ✓ 3D GLS (k-epsilon, k-omega …)
- ✓ 3D Smagorinsky

Turbulence closure : RANS, LES or MILES

◆ Physical / Numerical closure

$$
v_{\text{Smag}} \sim C_{\text{S}} \text{ L U} \qquad C_{\text{S}} \sim 0.01
$$

$$
v_{\text{Num}} \sim C_{\text{N}} \text{ L U} \qquad C_{\text{N}} = 1/12 \leftarrow UP3 \qquad \text{(Southet et al., 2016)}
$$

$$
1/60 \leftarrow UP5
$$

To be effective, SGS models must be used with high-order advection schemes that include shock-capturing skills (MILES)

CONCLUSIONS^{ity model}

CROCO is designed for bridging gaps

- ◆ From quasi-geostrophic eddies to micro-turbulence
- ◆ From oceanic to nearshore zones
- CROCO-NBQ is an original approach with many advantages
	- ◆ accuracy, performance, versatility
- ◆ Multiple tests and applications show good performances and helps further developments
- ◆ There is room for improving numerical methods and parametrizations:
	- ◆ High-order monotonic advection schemes
	- ◆ Immersed boundary conditions
	- ◆ Multi-resolution